scademy

Python security

CL-PYS | Onsite/ Virtual classroom | 3 days

Audience: Python developers, architects and testers
Preparedness: General Python development
Exercises: Hands-on

The Python language is used in many different settings — from command-line tools to complex Web
applications. Many of these Python programs are exposed to attack, either by being directly
accessible through the Internet or by directly processing user-provided data in a server environment.
Developers must therefore be extremely cautious in how to use different technologies securely, and
should also have a deep understanding in secure coding techniques and potential pitfalls.

This course covers the most critical security issues in Python applications. We cover vulnerabilities
from the OWASP Top Ten list for the web as they concern Python web applications as well as the
Django framework. The course also encompasses the most significant security issues for Python
code in general (including many Python-specific issues such as function hijacking), while also
presenting security solutions provided by the Python ecosystem — such as authentication, access
control and encryption.

Understanding the security solutions provided by Python as well as the various security issues and
vulnerabilities is a must for all programmers using these technologies to develop web, desktop or server
applications.

Outline:

IT security and secure coding

Web application security (OWASP Top Ten 2017)
Client-side security

XML security

Python security architecture

Practical cryptography

Common coding errors and vulnerabilities

Denial of service

Principles of security and secure coding
Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Learn Web vulnerabilities beyond OWASP Top Ten and know how to avoid them
Learn about XML security

Learn client-side vulnerabilities and secure coding practices

Understand security concepts of Web services

Learn about JSON security

Learn about Python security architecture

Have a practical understanding of cryptography

Learn about typical coding mistakes and how to avoid them

Learn about denial of service attacks and protections

Get sources and further readings on secure coding practices

Related courses:

e CL-WSC - Web application security (Onsite / Virtual classroom, 3 days)

e CL-WSM - Web application security master course (Onsite / Virtual classroom, 5 days)
e CL-PSC - Secure coding in PHP (Onsite / Virtual classroom, 3 days)

e (CL-NJS - Node.js and Web application security (Onsite / Virtual classroom, 3 days)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Day 1

secure coding academy

Detailed table of contents

IT security and secure coding

= Nature of security
» Whatis risk?

» [T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

Web application security (OWASP Top Ten 2017)

Nature of security flaws

From an infected computer to targeted attacks
The Seven Pernicious Kingdoms

OWASP Top Ten 2017

= A1 -Injection

Injection principles

SQL injection
= Exercise — SQL injection
= Typical SQL Injection attack methods
» Blind and time-based SQL injection
= SQL injection protection methods
= Database access in Python
= ORM libraries in Python

Other injection flaws
= Command injection

= Command injection exercise — starting Netcat

= (ase study — ImageMagick

= A2 - Broken authentication

Session handling threats

Session handling best practices

Sessions in Django

Additional cookie security considerations
Setting cookie attributes — best practices

Cross site request forgery (CSRF)
= (SRF prevention
= (SRF prevention in Django

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» A4 - XML external entity (XXE)
= XML Entity introduction
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation

= XML external entity attack — parameter entities ...,
= Exercise — XXE attack

= Preventing entity-related attacks

= (ase study — XXE in Google Toolbar

XML external entity attack ~ parameter entities.

= A5 - Broken access control

my.dtdfile

= Typical access control weaknesses o

= Insecure direct object reference (IDOR)
= Exercise — Insecure direct object reference
= Protection against IDOR
= (ase study — Facebook Notes
» A7 - Cross-Site Scripting (XSS)
= Persistent XSS
= Reflected XSS
= DOM-based XSS
= Exercise — Cross Site Scripting
= XSS prevention
= XSS prevention in Python
= A8 - Insecure deserialization
= Serialization and deserialization basics
= Security challenges of deserialization
= Security issues when using Pickle
= (Code injection via overriding __reduce_ _ in Pickle
= Code injection via YAML deserialization
= |ssues with deserialization — JSON

Day 2

Client-side security

= JavaScript security i e | j

= Same Origin Policy

* For GET and HEAD requests

B SIMPIE FEQUESES .o
= Preflight requests

= Exercise — Same-Origin Policy

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= JavaScript usage
= JavaScript Global Object
= Dangers of JavaScript
= Exercise — Client-side authentication
» C(Client-side authentication and password management
» Protecting JavaScript code
= (Clickjacking
= Exercise — IFrame, Where is My Car?
= Protection against Clickjacking
= Anti frame-busting — dismissing protection scripts
= Protection against busting frame busting
= AJAX security
= XSSinAJAX
= Scriptinjection attack in AJAX
= Exercise — XSS in AJAX
= XSS protection in AJAX
= Exercise CSRF in AJAX — JavaScript hijacking
= (SRF protection in AJAX
= HTML5 security
= New XSS possibilities in HTML5
= HTMLS5 clickjacking attack — text field injection
= HTML5 clickjacking — content extraction
= Form tampering
= Exercise — Form tampering
= (Cross-origin requests
= HTML proxy with cross-origin request
= Exercise - Client side include

XML security

= |ntroduction

» XML parsing

. \ embeddi 8o scademy 4
= XML parsing in Python F
= When an initial block of JSON is put to the page
- XML bomb * Do nmIMNHMHONImf’:Zi_p!?i::'iiﬁilsmm
= Exercise — XML bomb

= JSON security
= |ntroduction

* Embedding JSON server-side

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

JSON injection
JSON hijacking
Case study — XSS via spoofed JSON element

Python security architecture

= Python architecture

= Python applications and their attack surfaces

= Authentication and authorization

Authentication in Python

Authorization in Python

Authentication and authorization in Django
Authentication and authorization in Flask

» Code protection in Python

Python bytecode

Obfuscation

Modifying the Python runtime
Weaknesses in the techniques
Other protection methods
Related security issues
Sandboxing

Practical cryptography

* Rule #1 of implementing cryptography ...,
»= (Cryptosystems

Elements of a cryptosystem
Cryptographic libraries in Python — overview

= Symmetric-key cryptography

= QOther cryptographic algorithms

Providing confidentiality with symmetric cryptography
Symmetric encryption algorithms
Modes of operation

Symmetric encryption

= Other possiblities:
. the Python code to C, and distributing the compiled C

modules ina different language, and calling

eas aweb service, so the clients can't access
end

* If we want to protect the integrity of the distributed code, there
are libraries that enable signing packages (signet, signedimp)

Rule #1 of implementing cryptography

* Rule #1 of implementing cryptography

"Don't do it!"

« This bad approach s called security by obscurity

= Don't implement existing algorithms either
« Using available implementations from established libraries is more
secure andmore efficient anyway

Praviding integrity and authenticity with a symmetric key

Hash or message digest

Hash algorithms

SHAttered

Hashing

Message Authentication Code (MAC)
Providing integrity and authenticity with a symmetric key................

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Random number generation
= Random numbers and cryptography
» (Cryptographically-strong PRNGs
= Weak PRNGs in Python
* Random numbers
* Hardware-based TRNGs
» Asymmetric (public-key) cryptography
= Providing confidentiality with public-key encryption
= Rule of thumb — possession of private key
= The RSA algorithm
= Introduction to RSA algorithm
= Encrypting with RSA
» Combining symmetric and asymmetric algorithms
= Digital signing with RSA
= Asymmetric encryption
» Public Key Infrastructure (PKI)
*= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= (Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

Day 3

Common coding errors and vulnerabilities

* |nputvalidation
= |nput validation concepts
= Integer problems

= Representation of negative integers
* Integer overflow
= Integers in Python

* Integer problems in Python
= Exercise IntOverflow

Path traversal vulnerability
= Path traversal — weak protections
= Path traversal — best practices
= Path traversal mitigation

Unvalidated redirects and forwards
* Redirects in Django
= Log forging
= Some other typical problems with log files

www.scademy.com/courses
training(@scademy.com

= Anarithmeticinteger overflow occurs when an integer value is

incremented to a value that is too large to store in the associated
representation

* Most I / development donot

icate it (e.g. throw an exception)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scadem

secure coding academy

y

Executing user-controlled code in Python
Dangerous code execution — eval() and exec()

Dangerous code execution — input()

String formatting issues in Python
Format string problems in Python

Information leakage — can you guess the output?

Improper use of security features

Typical problems related to the use of security features

Password management

Exercise — Weakness of hashed passwords
Password management and storage
Special purpose hash algorithms for password storage
PBKDF2 and scrypt implementations in Python
Argon2 and bcrypt implementations in Python

Case study — the Ashley Madison data breach

Typical mistakes in password management

Dangers of reflection in Python

Python introspection and reflection — features and risks

Dynamic loading
= Module injection

Monkey patching

Monkey patching example
Function hijacking

Exercise — Module injection in Python

Improper error and exception handling

Typical problems with error and exception handling

Exception handling in Python

Empty except block

Overly broad except

Using multi-except

Returning from finally block — spot the bug!
Exercise ErrorHandling — spot the bug!

Exercise — Error handling

Relying on assertions for error checking — spot the bug!

Time and state problems

Concurrency and threading

Concurrency issues in Python

Concurrency modules in Python

The threading module
= Synchronization options
The Global Interpreter Lock

Performance and the GIL

www.scademy.com/courses
training(@scademy.com

0 done with search engines

ce attacks
* Supported by pre-computed Rainbow tables
* Bestpractices
* Enforce password policy (even better: use passphrase)
* Useaslow hash function, like berypt or PBKDF2

Monkay patching sxamgle

Empty except block

+ Almast all attacks start with the attacker breaking the programmers’

assumptions
= We don't handle an exception, because.
= “This method ist

try.
do_exchange()
except RareException
ass & "

pas

and when the error does happen, the program loses the exception
and makes it harder to detect the cause of the problem and fix the bug

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

* GIL management
*= Bypassing the GIL
= Aquote from Guido van Rossum
= Pools
= Exercise - GIL performance
= Exercise — Concurrency issues
» Time-of-check-to-time-of-use (TOCTTOU)
= Serialization errors
= Preventing file I/0 TOCTTOU in Python
= Exercise - TOCTTOU

» (Code quality problems
= Dangers arising from poor code quality
= |Immutability

= Immutability — guess the output! ...,

= (Context managers
= Resource management in Python
» Releasing resources — spot the bug!
= Aneven better solution
= Behind the with statement
* (@contextmanager decorator — spot the bug!
= (@contextmanager decorator — handling error

Denial of service

= DoSintroduction
= Asymmetric DoS

» Regular expression DoS (ReDoS)
= Exercise ReDoS
= ReDoS mitigation
= (Casestudy — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data
= Hashtable collision
= Hash tables in Python

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit

www.scademy.com/courses
training(@scademy.com

Worst case complexity: O(n?)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Vulnerability databases
» Python secure coding resources

» Recommended books — Python security

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

