scademy

Security testing native code

CL-CTS | Onsite/ Virtual classroom | 3 days
Variant: x86

Audience: C and C++ developers and testers
Preparedness: General C/C++ development, QA and testing
Exercises: Hands-on

To put it bluntly, writing C/C++ code can be a minefield for reasons ranging from memory
management or dealing with legacy code to sharp deadlines and code maintainability. Yet, beyond all
that, what if we told you that attackers were trying to break into your applications right now? How
likely would they be to succeed?

After getting familiar with the common weaknesses and their consequences that can allow hackers
to attack your system, participants learn about the general approach and the methodology for
security testing, and the techniques that can be applied to reveal specific vulnerabilities. Security
testing should start with information gathering about the system (ToC, i.e. Target of Evaluation), then
a thorough threat modeling should reveal and rate all threats, arriving to the most appropriate risk
analysis-driven test plan.

Security evaluations can happen at various steps of the SDLC, and so we discuss design review, code
review, reconnaissance and information gathering about the system, testing the implementation and
the testing and hardening the environment for secure deployment. Many different security testing
techniques are introduced in details, like taint analysis and heuristics-based code review, static code
analysis or fuzzing. Various types of tools are introduced that can be applied in order to automate
security evaluation of software products, which is also supported by a number of exercises, where we
execute these tools to analyze the already discussed vulnerable code.

This course prepares testers and QA staff to adequately plan and precisely execute security tests for
applications written in C or C++, select and use the most appropriate tools and techniques to find
even hidden security flaws, and thus gives essential practical skills that can be applied on the next
day working day.

Having secure applications will give you a distinct edge over your competitors. It is your choice to be
ahead of the pack — take a step and be a game-changer in the fight against cybercrime.

Outline:

IT security and secure coding
x86 machine code, memory layout and stack operations
Buffer overflow

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Common coding errors and vulnerabilities

Denial of service

Security testing

Security testing techniques and tools

Deployment environment

Principles of security and secure coding

Knowledge sources

Participants attending this course wiill:

Understand basic concepts of security, IT security and secure coding

Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses

Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries

Learn about denial of service attacks and protections

Understand security testing approaches and methodologies

Get practical knowledge in using security testing techniques and tools

Learn how to set up and operate the deployment environment securely

Get sources and further readings on secure coding practices

Related courses:

CL-CPI - Cand C++ secure coding (x86) (Onsite / Virtual classroom, 3 days)

CL-CPA - Cand C++ secure coding (ARM) {Onsite / Virtual classroom, 3 days)

CL-CCl - Comprehensive C and C++ secure coding (x86) (Onsite / Virtual classroom, 4 days)
CL-CCA - Comprehensive C and C++ secure coding {ARM) (Onsite / Virtual classroom, 4 days)
CL-CMI - C and C++ security master course (x86) (Onsite / VVirtual classroom, 5 days)
CL-CMA - C and C++ security master course (ARM) (Onsite / Virtual classroom, 5 days)

CL-JSM - Java and Web application security master course (Onsite / Virtual classroom, 5 days)

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Detailed table of contents

Day 1

IT security and secure coding

Nature of security
What is risk?
IT security vs. secure coding

From vulnerabilities to botnets and cybercrime
= Nature of security flaws
= From an infected computer to targeted attacks

x86 machine code, memory layout and stack operations

Intel 80x86 Processors — main registers

Intel 80x86 Processors — most important instructions
Intel 80x86 Processors — flags

Intel 80x86 Processors — control instructions

Intel 80x86 Processors — stack handling and flow control

The memory address layout

The function calling mechanism in C/C++ 0N X86.......ccccvvvevneirieninnne.

Calling conventions

The local variables and the stack frame

Function calls — prologue and epilogue of a function
Stack frame of nested calls

Stack frame of recursive functions

Buffer overflow

Stack overflow
= Buffer overflow on the stack
= Overwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Protection against stack overflow

Specific protection methods

Protection methods at different layers

The protection matrix of software security

Stack overflow — Prevention (during development)

Common coding errors and vulnerabilities

= Time and state problems

Time and state related problems
Serialization errors
Exercise TOCTTOU
Best practices against TOCTTOU

» (Code quality problems

Day 2

Dangers arising from poor code quality
Poor code quality — spot the bug!
Unreleased resources

Type mismatch — Spot the bug!
Exercise TypeMismatch

Memory allocation problems
* Smart pointers
= Zero length allocation
= Double free
* Mixing delete and delete[]

Common coding errors and vulnerabilities

* |nput validation

Input validation concepts

Integer problems
» Representation of negative integers
* Integer ranges
* Integer overflow
= Integer problems in C/C++
*= Theinteger promotion rule in C/C++
= Arithmetic overflow — spot the bug!
= Exercise IntOverflow
= What s the value of abs(INT_MIN)?
* Signedness bug — spot the bug!

www.scademy.com/courses
training(@scademy.com

« Two's complement

= 10010011
(194-19=19-19=0)
(8- -19=0+19=19)

(19+-19=0)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Integer truncation — spot the bug!
Integer problem — best practices
Case study — Android Stagefright

Printf format string bug

Printf format strings

Printf format string bug — exploitation

Exercise Printf

Printf format string exploit — overwriting the return address

Printf format string problem — best practices
Some other input validation problems

Array indexing — spot the bug!
Off-by-one and other null termination errors
The Unicode bug

Log forging

Some other typical problems with log files

» Improper use of security features

= Typical problems related to the use of security features

» Password management

Exercise — Weakness of hashed passwords
Password management and storage
Special purpose hash algorithms for password storage
Argon2 and PBKDF2 implementations in C/C++

becrypt and scrypt implementations in C/C++
Password audit

Exercise — using John the Ripper

Case study — the Ashley Madison data breach

Typical mistakes in password management

Exercise — Hard coded passwords

= Sensitive information in memory

Protecting secrets in memory

Sensitive info in memory - minimize the attack surface
Your secrets vs. dynamic memory
Zeroisation

Zeroisation vs. optimization — Spot the bug!
Copies of sensitive data on disk

Core dumps

Disabling core dumps

Swapping

Memory locking - preventing swapping
Problems with page locking

Best practices

www.scademy.com/courses

training(@scademy.com

Password management and storage

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 3

Denial of service

= DoS introduction
* Asymmetric DoS

» Regular expression DoS (ReDoS)
= Exercise ReDoS
= ReDoS mitigation
= (ase study — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data

Hashtablo collision

LI o = U =1] L= 0] | 117 o] o [T

= Hashtable collision in Java s
——
. . ; v 1 !]
Security testing N
» Functional testing vs. security testing =

= Security vulnerabilities
= Prioritization - risk analysis
= Security assessments in various SDLC phases

= Security testing methodology
= Steps of test planning (risk analysis) PE—

= Scoping and information gathering
= Stakeholders

= Assets [—] = (=]
= Security objectives for testing T
i [===
= Threat modeling

= Attacker profiles

= Threat modeling

= Threat modeling based on attack trees

= Threat modeling based on misuse/abuse cases
= Misuse/abuse cases — a simple example

] SDL threat mode“ng rest anamsration ~ mapping STRIDE t OFD slemants %0 scademy
= The STRIDE threat categories = Objective: To identify threats for each data flow diagram
element in the threat model
= Diagramming — elements of a DFD
* Data flow diagram — example wersens [_T|v| |v
. . Process VIV V[V V|
= Threat enumeration — mapping STRIDE to DFD O
Data Store - v v v v
elements lll Data Flow /—‘\ v Al

= Risk analysis — classification of threats

= The DREAD risk assessment model

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

Security testing techniques and tools

scademy

secure coding academy

= Testing steps
= Deriving test cases

= Accomplishing the tests
= Processing test results

= Mitigation concepts

= Standard mitigation techniques of MS SDL

= Review phase

General testing approaches

Source code review

= (Code review for software security

= Taintanalysis
= Heuristic-based
= Static code analysis

= Exercise — Static code analysis using FlawFinder

Testing the implementation

= Manual vs. automated security testing

= Penetration testing
= Stress tests

= Binary and memory analysis

= Exercise — Binary analysis with strings

= |pstrumentation libraries and frameworks

= Exercise — Using Valgrind

= Fuzzing

= Automated security testing - fuzzing

= Challenges of fuzzing

= Exercise — Fuzzing with AFL {(American Fuzzy Lop)

Deployment environment

Assessing the environment
Configuration management

Hardening
= Network-level hardening

= Hardening the deployment — server administration

= Hardening the deployment — access control

Patch and vulnerability management

= Patch management
= Vulnerability repositories

www.scademy.com/courses

training(@scademy.com

Automated security testing - fuzzing scademy)

* Fuzzing: systematic modification of binary input serving as test
vectors

« Fuzzin dom inputs (the initial idea)
defined inputs

erating fuzzing

* Examples of typical bugs that can be found
= Buffer overflow A

- Successive approximation

REJECTION

Vuinerability repositories

= Vulnerability repositories / databases
. OE
= NV
= CERT Vuin. Notes DB:
* Microsoft Security Bulletins:

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Vulnerability attributes
= Common Vulnerability Scoring System — CVSS
= \ulnerability management software

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

» Secure coding sources — a starter kit
= Vulnerability databases
» Recommended books — C/C++

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

