scademy

C and C++ secure coding (ARM) and security
testing

CL-CPAT | Virtual classroom | 4 days
Variant: ARM

Audience: C and C++ developers, software architects and testers
Preparedness: General C/C++ development
Exercises: Hands-on

This course teaches you how to test and write secure code in C and C++. We quickly dive into how an
ARM processor is built and how functions work on this architecture. Understanding these basics is
the first step in developing a security-focused mindset. Later, we explore how an attacker can exploit
simple buffer overflows and utilize more complex attack techniques. The course covers mitigation
techniques used during coding, compilation, and runtime. In the second part of the course, you will
learn about cryptography and security testing to make your secure coding knowledge complete.

When coding in C/C++, buffer overflow isn't the only thing you need to worry about. The course also
highlights the most common mistakes and defense techniques. After this training, participants will
apply the learned mitigation techniques in their daily work to prevent them from happening.

All of this is complemented with hands-on exercises using exploitable applications and a debugger.
Step-by-step instructions, challenge-based exercises, open-source testing tools and visual slides are
blended seamlessly to create the best learning experience.

Outline:

IT security and secure coding

ARM machine code, memory layout and stack operations
Buffer overflow

XML security

Common coding errors and vulnerabilities
Denial of service

Practical cryptography

Security in the software development lifecycle
Security testing

Security testing techniques and tools
Deployment environment

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Principles of security and secure coding

Knowledge sources

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding
Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses
Learn about XML security

Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries
Learn about denial of service attacks and protections

Have a practical understanding of cryptography

Understand security considerations in the SDLC

Understand security testing approaches and methodologies

Get practical knowledge in using security testing techniques and tools
Learn how to set up and operate the deployment environment securely

Get sources and further readings on secure coding practices

Related courses:

e (CL-CMI - Cand C++ security master course (x86) (Onsite / Virtual classroom, 5 days)
e (L-CMA - Cand C++ security master course (ARM) (Onsite / Virtual classroom, 5 days)
e CL-STS - Security testing (Onsite / Virtual classroom, 3 days)

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

= Nature of security
» Whatis risk?
= [T security vs. secure coding

* From vulnerabilities to botnets and cybercrime
= Nature of security flaws
= From an infected computer to targeted attacks

» (lassification of security flaws
= landwehr's taxonomy
= The Seven Pernicious Kingdoms

ARM machine code, memory layout and stack operations

= ARM Processors — main registers
= ARM Processors — most important instructions
= ARM Processors — flags and condition fields

= ARM Processors — control instructions

= ARM Processors — stack handling instructions
» Understanding complex ARM instructions

» The function calling mechanism in ARM
» The local variables and the stack frame

» Function calls — prologue and epilogue of a function {ARM)

saved regaters

= Stack frame of nested calls

= Stack frame of recursive functions

Buffer overflow

= Stack overflow
= Buffer overflow on the stack
= Overwriting the return address
= Exercises — introduction
= Exercise - Tools

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Exercises - QEMU
= Exercise BOFIntro
= Exercise BOFShellcode

Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The protection matrix of software security
= Stack overflow — Prevention (during development)
= The protection matrix of software security
= Stack overflow — Detection (during execution)
= Fortify compiler option (FORTIFY_ _SOURCE)
= Exercise BOFShellcode — Using the Fortify compiler option

Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection — prologue
= Effects of stack smashing protection — epilogue

= Bypassing stack smashing protection — an example.........coe....

U o scademy

= Qverwriting arguments — Mitigation
Address Space Layout Randomization (ASLR) :
» Randomization with ASLR 2

= By overwriting not only the return address but even the
arguments which are on the stack (input in our case) we can gain
= Software ASLR et ovr thel vk
= Resultsin Wri hat Where: buffer (filled with injected data) is
writtentoam

of course take plac
ten value has already be

= Practical weaknesses and limitations to ASLR
= Circumventing ASLR: NOP sledding

Non executable memory areas — the NX bit

= Access control on memory segments
= The Never eXecute (NX) bit
= Exercise BOFShellcodeEnforcing NX memory segments

Heap overflow

= Memory allocation managed by a doubly-linked list

s e o scaderny
= Buffer overflow on the heap

= OpenSSL is a widely used crypto library

e H H H = TLS Heartbeat Extension was introduced in v1.0.1
= Steps of freeing and joining memory blocks - et Yaep e pacaebtenan arte et
= Request / reply not only confirm that sessionis open, but also that
. 3 end-to-end connectivityis OK
= Freeing allocated memory blocks e ——
[}
[3Y * The request packet looks like the following
u CaSE StU d\/ - Heartb|EEd = TLS1_HB_REQUEST (1byte, =0x@1)
. = Size of the payload plus the padding (2 bytes, =34)
" TLS Heartbeat EXtenSlon .. * Payload - sequence number (2 bytes)

* Payload - random data (16 bytes)
= Padding - further random data (16 bytes)

= Heartbleed — information leakage in OpenSSL
= Heartbleed - fixinv1.0.1g

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Protection against heap overflow

Day 2

XML security

= XML injection
= Injection principles
= Exercise — XML injection
= Protection through sanitization and XML validation
= XML parsing in C++
= Abusing XML Entity
= XML Entity introduction
= Exercise — XML bomb
= XML bomb
= XML external entity attack (XXE) — resource inclusion
= Exercise — XXE attack
= Preventing entity-related attacks
= (ase study — XXE in Google Toolbar

Common coding errors and vulnerabilities

» Improper error and exception handling

= Typical problems with error and exception handling

= EMPty CAtCh BIOCK ...
= Qverly broad catch

= Exercise ErrorHandling — spot the bug!

= Exercise — Error handling

= (Code quality problems

= Dangers arising from poor code quality
= Poor code quality — spot the bug!

= Unreleased resources

= Type mismatch — Spot the bug!

= Exercise TypeMismatch

= Memory allocation problems
= Smart pointers
= Zero length allocation
= Double free
» Mixing delete and delete[]

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Use after free
= Use after free — Instance of a class
= Spotthe bug
= Use after free — Dangling pointers
= (ase study - WannaCry

Denial of service

= DoS introduction
* Asymmetric DoS

= Regular expression DoS (ReDoS)
= Exercise ReDoS
= (Casestudy — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data
= Hashtable collision

Common coding errors and vulnerabilities

* |nput validation
= Input validation concepts

= Integer problems
= Representation of negative integers
= Integerranges
= Integer overflow
= Integer problems in C/C++
= Theinteger promotion rule in C/C++
= Arithmetic overflow — spot the bug!
= Exercise IntOverflow
= Whatis the value of abs(INT_MIN)?
= Signedness bug — spot the bug!
= Integer truncation - spot the bug!
= Integer problem - best practices
= (ase study — Android Stagefright
= Printf format string bug
= Printf format strings
= Printf format string bug — exploitation
= Exercise Printf
= Printf format string problem — best practices
= Some other input validation problems
= Array indexing — spot the bug!
= Off-by-one and other null termination errors
= The Unicode bug

www.scademy.com/courses
training(@scademy.com

= 10010011
(194-19-19-19=0)
(0- -19=0+19=19)

its
-19 = 11101100

(19+-19+1=0)
(6-19-1=-19)

(8-19=-19)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Path traversal vulnerability
= Path traversal — weak protections
= Path traversal — best practices

= Log forging
= Some other typical problems with log files

Day 3

Common coding errors and vulnerabilities

» Improper use of security features
= Typical problems related to the use of security features
= Password management

= Exercise — Weakness of hashed passwords
= Password management and storage

Password management and storage

= Special purpose hash algorithms for password storage
* Argon2 and PBKDF2 implementations in C/C++

= berypt and scrypt implementations in C/C++

= (ase study — the Ashley Madison data breach

= Typical mistakes in password management

= Exercise - Hard coded passwords

= Sensitive information in memory
» Protecting secrets in memory
= Sensitive info in memory - minimize the attack surface
* Your secrets vs. dynamic memory
= Zeroisation
= Zeroisation vs. optimization — Spot the bug!
» (opies of sensitive data on disk
= Coredumps
» Disabling core dumps
= Swapping
= Memory locking - preventing swapping
* Problems with page locking
= Best practices

» Time and state problems
= Time and state related problems
= Serialization errors
= Exercise TOCTTOU
= Best practices against TOCTTOU

Practical cryptography

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

* Rule #1 of implementing cryptography

secure coding academy

» (ryptosystems

Elements of a cryptosystem
FIPS 140-2

= Symmetric-key cryptography

Providing confidentiality with symmetric cryptography

Symmetric encryption algorithms

Modes of operation

Comparing the modes of operation

Symmetric encryption with OpenSSL: encryption
Symmetric encryption with OpenSSL: decryption

» Other cryptographic algorithms

Hash or message digest

Hash algorithms

SHAttered

Hashing with OpenSSL

Message Authentication Code (MAC)

Providing integrity and authenticity with a symmetric

Random number generation
= Random numbers and cryptography
= Cryptographically-strong PRNGs
= Weak PRNGs inCand C++
= Stronger PRNGs in C
= Generating random numbers with OpenSSL
= Hardware-based TRNGs

» Asymmetric (public-key) cryptography

Providing confidentiality with public-key encryption
Rule of thumb — possession of private key

The RSA algorithm
= Introduction to RSA algorithm
= Encrypting with RSA
= Combining symmetric and asymmetric algorithms
= Digital signing with RSA
= Asymmetric encryption with OpenSSL
= Digital signatures with OpenSSL

» Public Key Infrastructure (PKI)

Root of Trust Concept
= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack

www.scademy.com/courses
training(@scademy.com

Rule #1 of implementing cryptography my

= Rule #1 of implementing cryptography

"Don't do it!"

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Certificate Authorities in Public Key Infrastructure

= X.509 digital certificate . i
ECAI \>
Buffer overflow Em \m
. . ECAA ECAS
» Return oriented programming (ROP) /

—ﬁ
Hierarchy of CAs

= (Circumventing memory execution protection
= Return-to-libc attack in ARM

= ROP gadget - Register fill with constants

= ROP gadget — Memory write

= Combining the ROP gadgets

= Real ROP attack scenarios
= ROP mitigation
= Mitigation techniques of ROP attack

Day 4

Security in the software development lifecycle

» Building Security In Maturity Model (BSIMM)

» Software Assurance Maturity Model (SAMM)
» Microsoft Security Development Lifecycle (SDL)

Security testing '@ﬁ@gg‘d

» Functional testing vs. security testing

Microsoft Security Developmant Lifecycle (SDL)

= Security vulnerabilities et racs vt

= Prioritization - risk analysis
» Security assessments in various SDLC phases
= Security testing methodology

= Steps of test planning (risk analysis)

= Scoping and information gathering
= Stakeholders
= Assets

= Security objectives for testing

. = = e
* Threat modeling =

= Attacker profiles

= Threat modeling

= Threat modeling based on attack trees

= Threat modeling based on misuse/abuse cases
= Misuse/abuse cases — a simple example

= SDL threat modeling

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= The STRIDE threat categories

= Diagramming — elements of a DFD

= Data flow diagram — example

= Threat enumeration — mapping STRIDE to DFD

CIEMEBNES v s

= Risk analysis - classification of threats
= The DREAD risk assessment model
= Testing steps
= Deriving test cases
= Accomplishing the tests
= Processing test results
= Mitigation concepts
= Standard mitigation techniques of MS SDL
= Review phase

Security testing techniques and tools

= General testing approaches

* Design review
= Assessment of security requirements
= |dentifying security-critical aspects — hotspots

= Source code review
= (Code review for software security
= Taintanalysis
= Heuristic-based
= Static code analysis
= Exercise — Static code analysis using FlawFinder
» Testing the implementation
= Manual vs. automated security testing
= Penetration testing
= Stress tests
= Binary and memory analysis
= Exercise — Binary analysis with strings
= Instrumentation libraries and frameworks
= Exercise — Using Valgrind
= Fuzzing
= Automated security testing - fuzzing
= Challenges of fuzzing
= Exercise — Fuzzing with AFL (American Fuzzy Lop)

www.scademy.com/courses
training(@scademy.com

Theoat enumaration - mapping STRIDE to DFD slaments R0 scademy

= Objective: To identify threats for each data flow diagram
elementin the threat model

D

Data Store

ematenty] |

Data Flow N

Automated security testing - fuzzing.

* Fuzzing: systematic modification of binary input serving as test
vectors

« Fuzzing with random inputs {the initial idea)
« Fuzzing based on pre-defined inputs
* Reactively iterating fuzzing

* Examples of typical bugs that can be found

= Buffer overflow m
approximation REJECTION
{ =

alidation

= Memory corruption (C/C++)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Deployment environment

» Assessing the environment
= Searching for online devices with SHODAN
= Exercise — using SHODAN
* Finding weaknesses with search engines
= Exercise - Finding weaknesses with search engines
= Password audit
= Exercise — using John the Ripper
= Testing random number generators
= Exercise — Testing random number generators

» Configuration management

» Hardening
= Network-level hardening
= Hardening the deployment — server administration
= Hardening the deployment — access control

» Patch and vulnerability management

= Patch management

= Vulnerability repositories
= Vulnerability attributes

= Software identification through CPE and SWID
= Common Vulnerability Scoring System — CVSS
= Vulnerability management software

= (ase study - Shellshock
= Shellshock — basics of using functions in bash
= Shellshock — vulnerability in bash
. Exercise - ShellsShoCK ..o,
» Shellshock fix and counterattacks
= Exercise — Command override with environment variables

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
» Vulnerability databases

= Recommended books — C/C++

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

