scademy

C and C++ SEI CERT based secure coding (ARRM)

CL-CPAS | Virtual classroom | 3days
Variant: ARM

Audience: C and C++ developers, software architects and testers
Preparedness: General C/C++ development
Exercises: Hands-on

This course teaches you how to write code according to the SEI CERT Secure Coding standards. It
starts with a brief introduction to the SEI. Then, we dive into how an ARM processor is built and how
functions work on this architecture. Understanding these basics is the first step in developing a
security-focused mindset. Later, we explore how an attacker can exploit simple buffer overflows and
utilize more complex attack techniques. The course covers mitigation techniques used during coding,
compilation, and runtime.

When coding in C/C++, buffer overflow isn't the only thing you need to worry about. The course also
highlights the most common mistakes and defense techniques. After this training, participants will
apply the learned mitigation techniques in their daily work to prevent them from happening.

All of this is complemented with hands-on exercises using exploitable applications and a debugger.
Step-by-step instructions, challenge-based exercises, and visual slides are blended seamlessly to
create the best learning experience.

Participants usually attend a master’s course to refresh their knowledge and dive deeper into secure
coding and some advanced topics such as cryptography.

Outline:

IT security and secure coding

ARM machine code, memory layout and stack operations
Buffer overflow

Summary of Buffer Overflow protections

SEI CERT examples

XML security

Common coding errors and vulnerabilities

Denial of service

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Be able to write code according to the SEI CERT Coding Standards

Understand basic concepts of security, IT security and secure coding

Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses

Learn about XML security

Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries
Learn about denial of service attacks and protections

Get sources and further readings on secure coding practices

Related courses:

e CL-CMI - Cand C++ security master course (x86) (Onsite / VVirtual classroom, 5 days)
e CL-CMA - Cand C++ security master course (ARM) (Onsite / Virtual classroom, 5 days)

e CL-CTS - Security testing native code (Onsite / Virtual classroom, 3 days)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

= Nature of security
» Whatis risk?
= [T security vs. secure coding

* From vulnerabilities to botnets and cybercrime
= Nature of security flaws
= From an infected computer to targeted attacks

» (lassification of security flaws
= landwehr's taxonomy
= The Seven Pernicious Kingdoms

» The SEI CERT Coding Standard
= SEI CERT Coding Standards
= The SEI CERT C Coding Standard
= SEI CERT — Rules and Recommendations
= SEICERT in this course

ARM machine code, memory layout and stack operations

» ARM Processors — main registers
= ARM Processors — most important instructions
» ARM Processors — flags and condition fields

= ARM Processors — control instructions

» ARM Processors — stack handling instructions
» Understanding complex ARM instructions

» The function calling mechanism in ARM

= The local variables and the stack frame

» Function calls — prologue and epilogue of a function
(ARM)

= Stack frame of nested calls

= Stack frame of recursive functions

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Buffer overflow

» Stack overflow
= Buffer overflow on the stack
= Overwriting the return address
= Breakout Session
= Exercises — introduction
= Exercise - Tools
= Exercises - QEMU
= Exercise BOFIntro
= Exercise BOFShellcode
= End of Breakout Session

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The protection matrix of software security
= Stack overflow — Prevention (during development)
= The protection matrix of software security
= Stack overflow — Detection (during execution)
= Fortify compiler option (FORTIFY_SOURCE)
= Bypassing stack smashing protection — an example ——

= Qverwriting arguments — Mitigation
= The protection matrix of software security
» Address Space Layout Randomization (ASLR)
= Randomization with ASLR
= Software ASLR
= Practical weaknesses and limitations to ASLR
= (Circumventing ASLR: NOP sledding
= Non executable memory areas — the NX bit
= Access control on memory segments
= The Never eXecute (NX) bit
= Breakout Session

= Exercise BOFShellcode — Using the Fortify compiler option

= Exercise BOFShellcode — Stack smashing protection

= Effects of stack smashing protection — prologue

= Effects of stack smashing protection — epilogue

= Exercise BOFShellcodeAddress Space Layout Randomization
= Using ASLR

= Exercise BOFShellcodeEnforcing NX memory segments

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Exercise BOFShellcodeTurning on all compiler protections
= Exercise BOFShellcode — Turning on all compiler protections
= End of Breakout Session

Summary of Buffer Overflow protections

= Summary of compiler options

» The protection matrix of software security

Day 2

Buffer overflow

» Return oriented programming (ROP)
= (Circumventing memory execution protection
= Return-to-libc attack in ARM
= ROP gadget - Register fill with constants
= ROP gadget — Memory write
= Combining the ROP gadgets
= Real ROP attack scenarios
= ROP mitigation
= Mitigation techniques of ROP attack
» Heap overflow
= Memory allocation managed by a doubly-linked list
= Buffer overflow on the heap
= Steps of freeing and joining memory blocks
= Freeing allocated memory blocks

= (ase study — Heartbleed
= TLS Heartbeat Extension
» Heartbleed - information leakage in OpenSSL
» Heartbleed - fixinv1.0.1g

Protection against heap overflow

SEI CERT examples

» Undefined and unspecified behavior
= Undefined behavior
= Unspecified behavior

www.scademy.com/courses
training(@scademy.com

TLS Heartbeat Extension

& = The sent payload is replied => could be decrypted
§
BY * The request packet looks like the following

= TLS1_HB_REQUEST (1byte, =@x@1)

= Size of the payl e

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Smart Pointers
= RAIl

= Exclusive ownership
= Let's write our own RAIl wrapper
= Spotthe bug!
= Smart pointers — exclusive ownership
= Spotthe bug!
» std:make_unique<T>(...)
= Shared ownership
= stdushared_ptr's control block
» stdushared_ptrinternals
= stdushared_ptr
= Whatis worse than leaking the memory?
= Spotthe bug!

= Fixed
= Spotthe bug!
= Fixed
= Spotthe bug!
* Fixed

= Related smart pointers
= Summary
Object lifetime management
= Manually managing object lifetime
= Spot the bug — Object lifetime management
= Manual Lifetime management
= Summary

Container iteration
= \/ector basics
= Spot the bug — Container iteration
= (ontainer Iteration
= Summary

Random Number Generators

= Random Number Generator basics

= How can you generate random numbers?
*= Generating random numbers

= What happens if the random number is weak or not strong enough?
= PlayStation 3
= Java nonce collision
* Microsoft Windows XP random number generator

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Pseudorandom Number Generators (PRNG)
= PRNGs in a nutshell
* Random number engines
» Spotthe bug — PRNGs 1
* Spotthe bug — PRNGs 2
= Lottery Application
= Lottery Application 1
= Lottery Application 2
= Summary

XML security

= XML injection

Injection principles

Exercise — XML injection

Protection through sanitization and XML validation
XML parsing in C++

= Abusing XML Entity

XML Entity introduction

Exercise — XML bomb

XML bomb

XML external entity attack (XXE) — resource inclusion
Exercise — XXE attack

Preventing entity-related attacks

Case study — XXE in Google Toolbar
» End of Breakout Session

Common coding errors and vulnerabilities

» Improper error and exception handling

Typical problems with error and exception handling

Empty catch BIOCK ...

Overly broad catch
Exercise ErrorHandling — spot the bug!
Exercise — Error handling

» (Code quality problems

Dangers arising from poor code quality
Poor code quality — spot the bug!
Unreleased resources

Type mismatch — Spot the bug!
Exercise TypeMismatch

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Memory allocation problems

Smart pointers

Zero length allocation
Double free

Mixing delete and delete([]

= Use after free

Use after free - Instance of a class
Spot the bug
Use after free — Dangling pointers

= (Casestudy - WannaCry

Day 3

Denial of service

= DoS introduction
* Asymmetric DoS

» Regular expression DoS (ReDoS)
= Exercise ReDoS
= (ase study — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data
= Hashtable collision

Common coding errors and vulnerabilities

* |nputvalidation
= |nput validation concepts
= Integer problems

= Representation of negative integers

= Integer ranges

= Integer overflow

= Integer problems in C/C++

= Theinteger promotion rule in C/C++
= Arithmetic overflow - spot the bug!
= Breakout Session

= Exercise IntOverflow

= Whatis the value of abs(INT_MIN)?
= Signedness bug - spot the bug!

= Integer truncation - spot the bug!

= Integer problem - best practices

= (Case study — Android Stagefright

www.scademy.com/courses
training(@scademy.com

* Signbit + positive binary value
-19 = 10010011

(194-19=19-19=0)
(0~ -19=0+19=19)

* One's ed bits

-19 = 111e11e0
(19+-19+1=0)
(0-19-1=-19)

nverted bits + 1
-19 = 11101101

(19+-19=8)
(8-19=-19)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Printf format string bug

Printf format strings
Printf format string bug — exploitation
Exercise Printf

Printf format string problem — best practices

Some other input validation problems

Array indexing — spot the bug!
Off-by-one and other null termination errors
The Unicode bug

Path traversal vulnerability

Path traversal — weak protections
Path traversal - best practices

Log forging

Some other typical problems with log files

» Improper use of security features

Typical problems related to the use of security features

Password management

Exercise — Weakness of hashed passwords

Password management and StOragec.vrinerineiinerineiineiineinne,

Special purpose hash algorithms for password storage
Argon2 and PBKDF2 implementations in C/C++

berypt and scrypt implementations in C/C++

Case study — the Ashley Madison data breach

Typical mistakes in password management

Exercise — Hard coded passwords

Sensitive information in memory

Protecting secrets in memory

Sensitive info in memory - minimize the attack surface
Your secrets vs. dynamic memory
Zeroisation

Zeroisation vs. optimization — Spot the bug!
Copies of sensitive data on disk

Core dumps

Disabling core dumps

Swapping

Memory locking - preventing swapping
Problems with page locking

Best practices

» Time and state problems

Time and state related problems

Serialization errors
Exercise TOCTTOU
Best practices against TOCTTOU

www.scademy.com/courses

training(@scademy.com

Password management and storage

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
= SEI CERT sources
= Vulnerability databases

= Recommended books — C/C++

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

