scademy

C and C++ secure coding (ARM)

CL-CPA | Onsite/ Virtual classroom | 3 days
Variant: ARM

Audience: C and C++ developers, software architects and testers
Preparedness: General C/C++ development
Exercises: Hands-on

To put it bluntly, writing C/C++ code can be a minefield for reasons ranging from memory
management or dealing with legacy code to sharp deadlines and code maintainability. Yet, beyond all
that, what if we told you that attackers were trying to break into your code right now? How likely
would they be to succeed?

This course will change the way you look at your C/C++ code. We'll teach you the common
weaknesses and their consequences that can allow hackers to attack your system, and — more
importantly — best practices you can apply to protect yourself. We give you a holistic view on C/C++
programming mistakes and their countermeasures from the machine code level to virtual functions
and OS memory management. We present the entire course through live practical exercises to keep it
engaging and fun.

Writing secure code will give you a distinct edge over your competitors. It is your choice to be ahead
of the pack — take a step and be a game-changer in the fight against cybercrime.

Outline:

IT security and secure coding

ARM machine code, memory layout and stack operations
Buffer overflow

Practical cryptography

XML security

Common coding errors and vulnerabilities

Denial of service

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses

Have a practical understanding of cryptography

Learn about XML security

Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries

Learn about denial of service attacks and protections

Get sources and further readings on secure coding practices

Related courses:

CL-CMI - C and C++ security master course (x86) (Onsite / Virtual classroom, 5 days)
CL-CMA - C and C++ security master course (ARM) (Onsite / Virtual classroom, 5 days)
CL-JSM - Java and Web application security master course (Onsite / Virtual classroom, 5 days)

CL-CTS - Security testing native code (Onsite / Virtual classroom, 3 days)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Detailed table of contents

Day 1

IT security and secure coding

Nature of security
What is risk?
IT security vs. secure coding
From vulnerabilities to botnets and cybercrime
= Nature of security flaws
= From an infected computer to targeted attacks
Classification of security flaws

= landwehr's taxonomy
= The Seven Pernicious Kingdoms

ARM machine code, memory layout and stack operations

ARM Processors — main registers
ARM Processors — most important instructions
ARM Processors — flags and condition fields
ARM Processors — control instructions

ARM Processors — stack handling instructions
Understanding complex ARM instructions

The function calling mechanism in ARM
The local variables and the stack frame

k=)

Function calls — prologue and epilogue of a function (ARM)

Stack frame of nested calls

Stack frame of recursive functions

Buffer overflow

Stack overflow
= Buffer overflow on the stack
= Overwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The protection matrix of software security
= Stack overflow — Prevention (during development)
= The protection matrix of software security
= Stack overflow — Detection (during execution)
= Fortify compiler option (FORTIFY_SOURCE)
= Exercise BOFShellcode — Using the Fortify compiler option

» Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection — prologue
= Effects of stack smashing protection — epilogue

= Bypassing stack smashing protection — an example........ccooveeee. i otk
= Qverwriting arguments — Mitigation
= The protection matrix of software security
» Address Space Layout Randomization (ASLR)
= Randomization with ASLR
= Practical weaknesses and limitations to ASLR

= (Circumventing ASLR: NOP sledding
* Non executable memory areas — the NX bit

= Access control on memory segments
= The Never eXecute (NX) bit

= Exercise BOFShellcode — Enforcing NX memory
segments

Day 2

Buffer overflow

» Return oriented programming (ROP)
= (Circumventing memory execution protection
= Return-to-libc attack in ARM
= ROP gadget - Register fill with constants
= ROP gadget — Memory write
= Combining the ROP gadgets
= Real ROP attack scenarios

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= ROP mitigation
= Mitigation techniques of ROP attack
= Heap overflow
= Memory allocation managed by a doubly-linked list
= Buffer overflow on the heap
= Steps of freeing and joining memory blocks
= Freeing allocated memory blocks

= (ase study — Heartbleed
= TLS Heartbeat EXteNSioN ...
= Heartbleed — information leakage in OpenSSL
= Heartbleed - fixinv1.0.1g

= Protection against heap overflow

Practical cryptography

* Rule #1 of implementing cryptography ..o

= (ryptosystems
= Elements of a cryptosystem
= Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography
= Symmetric encryption algorithms
= Modes of operation
= Symmetric encryption with OpenSSL: encryption
= Symmetric encryption with OpenSSL: decryption
» Other cryptographic algorithms
= Hash or message digest
= Hash algorithms
= SHAttered
= Hashing with OpenSSL
= Message Authentication Code (MAC)
= Providing integrity and authenticity with a symmetric key

= Random number generation
= Random numbers and cryptography
= Cryptographically-strong PRNGs
= Weak PRNGsin Cand C++
= Stronger PRNGs in C
= Generating random numbers with OpenSSL
= Hardware-based TRNGs

www.scademy.com/courses
training(@scademy.com

TLS Hearibest Extonsion Do scademy

= OpenSSL is a widely used crypto library
= TLS Heartbeat Extension was introduced in v1.0.1

* It sends "keep alive" packets between parties {default)
* Request / reply not anly confirm that sessionis open, but also that
end-to-end connectivityis Ol
= The sent payload is replied => could be decrypted

= The request packet looks like the following
= TLS1_HB_REQUEST (1byte, =0x01)
= Size of the payload plus the padding (2 bytes, =34)
* Payload - sequence number {2 bytes)
* Payload - random data (16 bytes)
= Padding - further random data (16 bytes)

o #1 of implementing cryptography

= Rule #1 of implementing cryptography |
"Don't do it!"

= Don'tinvent your own algorithms

use nobody knows how it worksis a

= This bad approach s called security by obscurity

= Don'timplement existing algorithms either
« Using available implementations from established libraries is more
secure andmore efficient anyway

ymmeinc byt Secure channel Fp [Eymmetric ey

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Asymmetric (public-key) cryptography

Providing confidentiality with public-key encryption
Rule of thumb — possession of private key

The RSA algorithm
» Introduction to RSA algorithm
= Encrypting with RSA
= Combining symmetric and asymmetric algorithms
= Digital signing with RSA
= Asymmetric encryption with OpenSSL
» Digital signatures with OpenSSL

» Public Key Infrastructure (PKI)

XML sec

Man-in-the-Middle (MitM) attack

Digital certificates against MitM attack
Certificate Authorities in Public Key Infrastructure
X.509 digital certificate

urity

= XML injection

Injection principles

Exercise — XML injection

Protection through sanitization and XML validation
XML parsing in C++

= Abusing XML Entity

XML Entity introduction

Exercise — XML bomb

XML bomb

XML external entity attack (XXE) — resource inclusion
Exercise — XXE attack

Preventing entity-related attacks

Case study — XXE in Google Toolbar

Common coding errors and vulnerabilities

= Improper error and exception handling

Typical problems with error and exception handling

Empty catch BIOCK ..o

Overly broad catch
Exercise ErrorHandling — spot the bug!
Exercise — Error handling

www.scademy.com/courses
training(@scademy.com

and when the error does happen, the program loses the exception
and makes it harder to detect the cause of the problem and fix the bug

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» (Code quality problems
= Dangers arising from poor code quality
= Poor code quality — spot the bug!
= Unreleased resources
= Type mismatch — Spot the bug!
= Exercise TypeMismatch

= Memory allocation problems
= Smart pointers
= Zero length allocation
= Double free
= Mixing delete and delete[]

= Use after free
= Use after free — Instance of a class
= Spotthe bug
= Use after free — Dangling pointers
= (ase study - WannaCry

Day 3

Denial of service

= DoSintroduction
» Asymmetric DoS

» Regular expression DoS (ReDoS)
= Exercise ReDoS
= (Casestudy — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data
= Hashtable collision

Common coding errors and vulnerabilities

* |nput validation
= Input validation concepts

= Integer problems
= Representation of negative integers
= Integerranges
= Integer overflow
= Integer problems in C/C++
= Theinteger promotion rule in C/C++
= Arithmetic overflow - spot the bug!

www.scademy.com/courses
training(@scademy.com

Hashtable collision

|
e
= 10010011
(194-19-19-19=0)
(8- -19=0+19=19)

= 11101100
(19+-19+41=0)
A (0-19-1=-19)

erted bits + 1

= 11101101
(19+-19-0)
(0-19=-19)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Exercise IntOverflow

What is the value of abs({INT _MIN}?
Signedness bug — spot the bug!
Integer truncation - spot the bug!
Integer problem — best practices
Case study — Android Stagefright

= Printf format string bug

Printf format strings
Printf format string bug — exploitation
Exercise Printf

= Printf format string problem — best practices

= Some other input validation problems

Array indexing — spot the bug!
Off-by-one and other null termination errors
The Unicode bug

= Path traversal vulnerability

Path traversal — weak protections
Path traversal - best practices

= Log forging

Some other typical problems with log files

» Improper use of security features

= Typical problems related to the use of security features

» Password management

Exercise — Weakness of hashed passwords
Password management and storage
Special purpose hash algorithms for password storage
Argon2 and PBKDF2 implementations in C/C++

berypt and scrypt implementations in C/C++

Case study — the Ashley Madison data breach

Typical mistakes in password management

Exercise — Hard coded passwords

= Sensitive information in memory

Protecting secrets in memory

Sensitive info in memory - minimize the attack surface
Your secrets vs. dynamic memory
Zeroisation

Zeroisation vs. optimization — Spot the bug!
Copies of sensitive data on disk

Core dumps

Disabling core dumps

Swapping

Memory locking - preventing swapping
Problems with page locking

Best practices

www.scademy.com/courses

training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Time and state problems
= Time and state related problems
= Serialization errors
= Exercise TOCTTOU
= Best practices against TOCTTOU

Principles of security and secure coding
» Matt Bishop's principles of robust programming
» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
= Vulnerability databases

= Recommended books — C/C++

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

