scademy

Secure desktop application development in C#

CL-ANS | Onsite / Virtual classroom | 3 days

Audience: Ci# desktop application developers, software architects and testers
Preparedness: General C# development
Exercises: Hands-on

As a developer, your duty is to write bulletproof code. However...

What if we told you that despite all of your efforts, the code you have been writing your entire career
is full of weaknesses you never knew existed? What if, as you are reading this, hackers were trying to
break into your code? How likely would they be to succeed?

This combined course will change the way you look at code. A hands-on training during which we will
teach you all of the attackers' tricks and how to mitigate them, leaving you with no other feeling than
the desire to know more.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against
cybercrime.

Outline:

IT security and secure coding

Common coding errors and vulnerabilities
NET security architecture and services
Practical cryptography

Desktop application security

Data access security in .NET

Windows Communication Foundation security
Denial of service

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Learn about typical coding mistakes and how to avoid them

Learn to use various security features of the .NET development environment
Have a practical understanding of cryptography

Understand security concepts of Web services

Learn about XML security

Learn about denial of service attacks and protections

Get sources and further readings on secure coding practices

Related courses:

e CL-NWA - C# and Web application security (Onsite / Virtual classroom, 3 days)

e CL-NSM - C# and Web application security master course (Onsite / Virtual classroom, 5 days)
e CL-WSC - Web application security (Onsite / Virtual classroom, 3 days)

e CL-WTS - Web application security testing (Onsite / Virtual classroom, 3 days)

e (CL-NSM - Ci# and Web application security master course (Onsite / Virtual classroom, 5 days)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Detailed table of contents

Day 1

IT security and secure coding

= Nature of security
» Whatis risk?
» [T security vs. secure coding

* From vulnerabilities to botnets and cybercrime
= Nature of security flaws
= From an infected computer to targeted attacks

» (lassification of security flaws
= landwehr's taxonomy
= The Seven Pernicious Kingdoms
= OWASP Top Ten 2017

Common coding errors and vulnerabilities

* |nputvalidation
= |nput validation concepts
= [njection
= Injection principles
= SQL injection
» Command injection
= (ase study — ImageMagick

Integer problems
» Representation of negative integers
* Integer overflow
= Exercise IntOverflow
= What s the value of Math.Abs(int.MinValue)?
» Integer problem - best practices
» (ase study — Integer overflow in .NET

Path traversal vulnerability
= Path traversal — weak protections
= Path traversal — best practices

Unsafe native calls
» Exercise - Unsafe unmanaged code

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Unsafe reflection
= |mplementation of a command dispatcher
= Unsafe reflection — spot the bug!
= Mitigation of unsafe reflection

= Log forging
= Some other typical problems with log files

Day 2

.NET security architecture and services

= NET architecture

» Code Access Security
= Full and partial trust
= Evidence classes
= Permissions

Code access permission classes
= Deriving permissions from evidence

Defining custom permissions

NET runtime permission checking

The Stack Walk

Effects 0f ASSEIE() ..o 7
Class and method-level declarative permission » With Assert() one can perform an action “wit the prvlege o

the calling class", which simply means that
« The stack will be checked up to the caller of Assert()

Imperative (programmatic) permission checking
= Exercise — sandboxing .NET code — I

System.IO.File.Open

= Using transparency attributes

PlayMusic.Play(..)

Allow partially trusted callers
= Exercise — using transparency attributes
» Role-based security
= Principal-based authorization
= Exercise — adding role-based authorization
= [mpersonation

Practical cryptography

Rule #1 of implemnting cryptography

» Rule #1 of implementing cryptography ..o AT
"Don't do it!"

» (Cryptosystems
= Elements of a cryptosystem

= .NET cryptographic architecture
= Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Symmetric encryption algorithms

= Modes of operation

» Encrypting and decrypting (symmetric)
= QOther cryptographic algorithms

= Hash or message digest

= Hash algorithms

= SHAttered

= Hashing

= Message Authentication Code (MAC)

= Providing integrity and authenticity with a symmetric key

» Asymmetric (public-key) cryptography
= Providing confidentiality with public-key encryption
= Rule of thumb — possession of private key
= The RSA algorithm
= Introduction to RSA algorithm
= Encrypting with RSA
= Combining symmetric and asymmetric algorithms
= Digital signing with RSA
= Asymmetric algorithms in NET
= Exercise Sign
= Exercise — using .NET cryptographic classes
» Public Key Infrastructure (PKI)
* Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= (Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

Desktop application security

= \Windows Presentation Foundation
= |ntroduction to WPF

= Extensible Application Markup Language (XAML)

= WPF deployment MOdelS.......ccovvnenniesseeeseeeens
» Common security issues with desktop .NET applications

= Resource hijacking in WPF applications
= Exercise — LibHijack
» Protecting .NET code
= Authenticode
= Exercise — Using Authenticode

www.scademy.com/courses
training(@scademy.com

Praviding integrity and authenticity with a symmetric key gx) scademy

s for Windows Forms applications

") - the application runs inside a plugin

he browser

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= XML security

= XML injection
= (Ab)using CDATA to store XSS payload in XML
= Exercise — XML injection
= Protection through sanitization and XML validation

= Abusing XML Entity
= XML Entity introduction
= XML bomb
= Exercise — XML bomb
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation
= XML external entity attack — parameter entities
= Exercise — XXE attack
= Preventing entity-related attacks
= (ase study — XXE in Google Toolbar

* Parameter e be defined with an additional % sign
it to send the content of a file using a remote DTD

Day 3

Data access security in .NET

» Working with databases in .NET

Windows Communication Foundation security
» Introduction to WCF

= WCF architecture and security considerations

= WHCF architecture
= Security considerations for the hosting environment ...,

Security considerations for the hosting environment

= WCF security terminology « Fthe WCF appication’s unning o 15 the sual5

considerations apply
= Transport layer security * Service solaton
* Run each ses asits own permission set (user)

= Transport layer security — client authentication Bty

Do not let service:
data

= Message level security
= Authorization options

Password management and storage

Common coding errors and vulnerabilities

* Hashed passwords are still vulnerable to
* Password guessing: blank, user's name, etc

» Improper use of security features

* Dictionary attacks
.G done with search engines

= Typical problems related to the use of security features

= Password management
= Exercise — Weakness of hashed passwords
= Password management and storage
= Special purpose hash algorithms for password storage

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Argon2 and PBKDF2 implementations in .NET
= bcrypt and scrypt implementations in .NET

= (ase study — the Ashley Madison data breach
= Typical mistakes in password management

= Exercise — Hard coded passwords

» Improper error and exception handling

Typical problems with error and exception handling

Empty catch BIOCK ...
Overly broad catch

Using multi-catch

Catching NullReferenceException

Exception handling — spot the bug!

Exercise — Error handling

» Time and state problems

Concurrency and threading

Concurrency in .NET

Omitted synchronization — spot the bug!
Exercise — Omitted synchronization

Incorrect granularity — spot the bug!
Exercise — Incorrect granularity
Deadlocks

Avoiding deadlocks

Exercise — Avoiding deadlocks
Lock statement

» (Code quality problems

Dangers arising from poor code quality
Serialization — spot the bug!

Exercise — Serializable sensitive

Class not sealed — object hijacking
Exercise — Object hijacking

Immutable string — spot the bug!

Exercise — Immutable strings
USING SECUIESEIING ...

Empty catch block

« Almostall attacks start with the attacker breaking the programmers'
assumptions
= We don't handle an exception, because.

and when the error does happen, the program loses the exception
and makes it harder to detect the cause of the problem and fix the bug

Using SecursString.

* If the string-handling data structure stores some sensitive data,
its features are even more critical
= Immutability - several copies may exist in the memory
« Disposability - can we dismiss it from the memory as soon as it is
no longer needed?

= SecureString is disposable and mutable
» Canbe disposed regardless of the garbage collector
* Canbe made immutable by calling MakeReadOn1y ()
» This cannot be undone

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Denial of service

= DoS introduction
* Asymmetric DoS

» Regular expression DoS (ReDoS)
= Exercise ReDoS
= ReDoS mitigation
= (ase study — ReDos in Stack Exchange

= Hashtable collision attack

= Using hashtables to store data

B Hashtable CollISION ..

= Hashtable collision in ASP.NET

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit

Vulnerability databases

NET secure coding guidelines at MSDN

NET secure coding cheat sheets
» Recommended books — .NET and ASP.NET

www.scademy.com/courses
training(@scademy.com

Worst case complexity: O(n?)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

