scademy

Web application security with SDL

CL-SDW | Classroom | 3days

Audience: Project managers, software developers, architects and testers
Preparedness: General software development
Exercises: Hands-on

The course gives an insight into secure software design, development and testing through Microsoft
Secure Development Lifecycle (SDL) with a focus on web application security. It provides a level 100
overview of the fundamental building blocks of SDL, followed by design techniques to apply to detect
and fix flaws in early stages of the development process of web applications.

Dealing with the development phase, the course gives an overview of the typical security relevant
programming bugs in web applications. In this it follows the OWASP Top Ten, but also introduces
some client-side issues tackling Javascript security, Ajax and HTMLS5.

Attack methods are presented for the discussed vulnerabilities along with the associated mitigation
techniques, all explained through a number of hands-on exercises providing live hacking fun for the
participants. Introduction of different security testing methods is followed by demonstrating the
effectiveness of various testing tools. Participants can understand the operation of these tools
through a number of practical exercises by applying the tools to the already discussed vulnerable
code.

Outline:

IT security and secure coding

Introduction to the Microsoft® Security Development Lifecycle (SDL)
Secure design principles

Secure implementation principles

Client-side security

XML security

Denial of service

Secure verification principles

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Get known to the essential steps of Microsoft Secure Development Lifecycle

Learn secure design and development practices

Learn about secure implementation principles

Learn client-side vulnerabilities and secure coding practices

Learn about XML security

Learn about denial of service attacks and protections

Understand security testing methodology

Get sources and further readings on secure coding practices

Related courses:

CL-NWA - C# and Web application security (Classroom, 3 days)

CL-WDT - Secure Web application development and testing for DevOps (Classroom, 3 days)

CL-0SC - The secure coding landscape (Classroom, 2 days)

CL-SDW - Web application security with SDL (Classroom, 3 days)

Note: Parts of this course material are provided by Microsoft. Microsoft makes its four core SDL
Training classes available to the public: Introduction to the Microsoft Security Development Lifecycle
(SDL); Introduction to Microsoft Threat Modeling; Basics of Secure Design, Development, and Test;
Privacy for Software Development.

www.scademy.com/courses
training@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

» Nature of security
* What s risk?
» |T security vs. secure coding

» From vulnerabilities to botnets and cybercrime

= Nature of security flaws
. Reasons of diffiCulty ..o
= From an infected computer to targeted attacks

» (lassification of security flaws
= landwehr’s taxonomy
= The Seven Pernicious Kingdoms
= OWASP Top Ten 2017

Introduction to the Microsoft® Security Development
Lifecycle (SDL)

= Agenda

Applications under attack...
= (Cybercrime Evolution
= Attacks are focusing on applications
= Most vulnerabilities are in smaller ISV apps

Origins of the Microsoft SDL...
= Security Timeline at Microsoft...

= Which apps are required to follow SDL?

Microsoft Security Development Lifecycle (SDL)
= Pre-SDL Requirements: Security Training
= Phase One: Requirements
= Phase Two: Design
= Phase Three: Implementation
= Phase Four: Verification
= Phase Five: Release

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Post-SDL Requirement: Response
= SDL Process Guidance for LOB Apps
= SDL Guidance for Agile Methodologies

Secure design principles

= Attack surface

= Attack surface reduction

= Attack surface — an example
= Attack surface analysis

= Attack surface reduction — examples

= Privacy

= Understanding Application Behaviors and Concerns

= Defensein depth
= SDL Core Principle: Defense In Depth
= Defensein depth — example
= Least privilege principle
= |east privilege — example
» Secure defaults
= Secure defaults — examples

Secure implementation principles

= Agenda
» Microsoft Security Development Lifecycle (SDL)

* |nputvalidation

= Input validation concepts

= Integer problems
= Representation of negative integers
= Integer overflow
= Exercise IntOverflow
= Whatis the value of Math.Abs(int.MinValue)?
= Integer problem — best practices
= (Casestudy — Integer overflow in .NET

= Buffer overflow basics
= Intel 80x86 Processors — main registers

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 2

The function calling mechanism in C/C++ on x86
The local variables and the stack frame

Stack overflow
= Buffer overflow on the stack
= QOverwriting the return address

Secure implementation principles

= SQLinjection

Exercise — SQL injection

Typical SQL Injection attack methods
Blind and time-based SQL injection
SQL injection protection methods
Effect of data storage frameworks on SQL injection in .NET

= Other injection flaws

Command injection
Command injection exercise — starting Netcat

» Broken authentication - password management

Exercise — Weakness of hashed passwords
Password management and storage
Special purpose hash algorithms for password storage

Case study — the Ashley Madison data breach
= The loginkey token
= Revealing the passwords with brute forcing

» (ross-Site Scripting (XSS)

Persistent XSS

Reflected XSS

DOM-based XSS

Exercise — Cross Site Scripting
Exploitation: CSS injection

Exploitation: injecting the <base> tag
Exercise — HTML injection with base tag
XSS prevention

Output encoding APl in C#

XSS protection in ASP.NET - validateRequest
Web Protection Library (WPL)

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Client-side security

= JavaScript security

= Same Origin Policy

» (ross Origin Resource Sharing (CORS) U

» Exercise - Client-side authentication o | %
« Simple request)

» (lient-side authentication and password management gL L E ’

» Protecting JavaScript code T il

* Browser vill block it - if the request came from a JavaScript, an
eror will occur in the callback

» Clickjacking i

nding is enough to steal information

= Exercise — Do you Like me?

= Protection against Clickjacking
= Anti frame-busting — dismissing protection scripts
= Protection against busting frame busting

= AJAX security
= XSSin AJAX
= Scriptinjection attack in AJAX
= Exercise — XSS in AJAX
= XSS protection in Ajax
= Exercise CSRF in AJAX — JavaScript hijacking
= (SRF protection in AJAX

= HTML5 security
= New XSS possibilities in HTML5
= HTML5 clickjacking attack — text field injection
= HTML5 clickjacking — content extraction
= Form tampering
= Exercise — Form tampering
= (Cross-origin requests
= HTML proxy with cross-origin request

HTML proxy with eross-origin request

= Exercise — Client side include « Ganwe do & HTTP proxy vith is?

» Practical cryptography ;

= Providing confidentiality with symmetric cryptography
= Symmetric encryption algorithms * Rovrse Weh ol it (XS5 i TP

- XSS + COR can be used for lunneling HTTP traffic batween the user
and the attacker

H = With the ir ted I bke si
* Modes of operation o s e e m

Providing integrity and suthenticity with & symmetric key go scademy

= Hash or message digest

= Hash algorithms o L
Secura chane
= Message Authentication Code (MAC) s

Mazsage
{document) imessage
o be sent (document)

= Providing integrity and authenticity with a symmetric key.............. T e T e |
www.scademy.com/courses Developing motivated

training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Providing confidentiality with public-key encryption
= Rule of thumb — possession of private key
= (Conclusion

Day 3

XML security

* Introduction
»= XML parsing
= XML injection
= (Ab)using CDATA to store XSS payload in XML
= Exercise — XML injection
= Protection through sanitization and XML validation

= Abusing XML Entity
= XML Entity introduction
= XML bomb
= Exercise — XML bomb
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation

= XML external entity attack — parameter entitiesccoeee...... JE——m——p

= Exercise — XXE attack
= Preventing entity-related attacks
= (ase study — XXE in Google Toolbar

Denial of service

* DoS introduction

= Asymmetric DoS

= SSL/TLS renegotiation DoS

» Regular expression DoS (ReDoS)

= Exercise ReDoS
= ReDoS mitigation

= (ase study — ReDos in Stack Exchange

= Hashtable collision attack
= Using hashtables to store inputs
= Hashtable collision
= Hashtable collision in ASP.NET

www.scademy.com/courses
training(@scademy.com

n be used only within DTD definition and
cros

defined with an additional % sign
the content of a file using a remote DTD

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Secure verification principles

Functional testing vs. security testing
Security vulnerabilities

Prioritization — risk analysis

Security in the SDLC

Security assessments in various SDLC phases
Steps of test planning (risk analysis)

Scoping and information gathering
= Stakeholders
= Assets
= Security objectives for testing

Threat modeling
= Attacker profiles
= Threat modeling
= Threat modeling based on attack trees
= Threat modeling based on misuse/abuse cases
= Misuse/abuse cases — a simple example
= SDL threat modeling
= The STRIDE threat categories
= Diagramming — elements of a DFD
= Data flow diagram — example
= Threat enumeration — mapping STRIDE to DFD elements

= Risk analysis — classification of threats » Ojoctve: Todenttyprts o eacncta fow daram
= The DREAD risk assessment model

Security testing techniques and tools m: %I : . »
= General testing approaches e —

Source code review

= (Code review for software security
= Taint analysis
= Heuristic-based

Static code analysis
= Exercise — Using static code analysis tools

Testing the implementation
= Dynamic security testing
= Manual vs. automated security testing
= Penetration testing
= Stress tests

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

* Fuzzing
= Automated security testing - fuzzing
= (Challenges of fuzzing

= Web vulnerability scanners
= Exercise — Using a vulnerability scanner

* Deployment environment
= Vulnerability repositories
= Common Vulnerability Scoring System — CVSS
= Vulnerability scanners

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

» Secure coding sources — a starter kit

Vulnerability databases

NET secure coding guidelines at MSDN

NET secure coding cheat sheets
» Recommended books — .NET and ASP.NET

www.scademy.com/courses
training(@scademy.com

Automated security testing - fuzzing

* Fuzzing: systematic modification of binary input serving
as test vectors
* Fuzzing with random inputs (the initial idea)
= Fuzzing based on pre-defined inputs
= Reactively iterating fuzzing
= Examples of typical bugs that can be found
« Buffer Overflow
* Successive approximation i
(binary search)

REJECTION

—
if ((unsigned int) 1 < @)

* Signedness bug

= Integer Overflow

1F (1256 <= 1024)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

