scademy

Combined Java, C# and Web application security

CL-JNW | Classroom | 3days

Audience: Java and C# developers, architects and testers
Preparedness: General Java, C# and Web application development
Exercises: Hands-on

As a developer, your duty is to write bulletproof code. However...

What if we told you that despite all of your efforts, the code you have been writing your entire career
is full of weaknesses you never knew existed? What if, as you are reading this, hackers were trying to
break into your code? How likely would they be to succeed?

This combined course will change the way you look at code. A hands-on training during which we will
teach you all of the attackers’ tricks and how to mitigate them, leaving you with no other feeling than
the desire to know more.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against
cybercrime.

Outline:

IT security and secure coding

Web application security

Client-side security

Practical cryptography

Foundations of Java security

Java security services

NET security architecture and services
Common coding errors and vulnerabilities
Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Learn Web vulnerabilities beyond OWASP Top Ten and know how to avoid them
Learn about XML security

Learn client-side vulnerabilities and secure coding practices

Have a practical understanding of cryptography

Learn to use various security features of the Java development environment
Learn to use various security features of the .NET development environment
Learn about typical coding mistakes and how to avoid them

Get sources and further readings on secure coding practices

Related courses:

e (L-WSC - Web application security (Classroom, 3 days)
e CL-WTS - Web application security testing (Classroom, 3 days)
e (L-JSM - Java and Web application security master course (Classroom, 5 days)

e CL-NSM - C# and Web application security master course (Classroom, 5 days)

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a
pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 1

Detailed table of contents

IT security and secure coding

» Nature of security
* What s risk?

» |T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

= Nature of security flaws
= Reasons of diffiCulty ...

Reasons of difficulty

* 1% reason: Itis an unbalanced fight

1 Available time and resources of the developers vs. mativation and
= From an infected computer to targeted attacks e s
« 27 reason: Security testing is challenging
Functional testing checks for how the system should work, while in case of
security it is about how the system should not work
Web licati it
eb application security O ———
Due to the technical difficulties of measuring the level of security, there is
no real customer enforced competition
n | t + 4" reason: End-users suffer from the damage
njection 9
Developers are not motivated enough financially

= Injection principles

= SQLinjection

= Qtherinjection flaws

Exercise — SQL injection
Typical SQL Injection attack methods
Blind and time-based SQL injection

SQL injection protection methods

Effect of data storage frameworks on SQL injection in Java

Command injection
Command injection exercise — starting Netcat
Case study — ImageMagick

Cookie injection / HTTP parameter pollution
Exercise — Value shadowing

= Broken authentication

= Session handling threats

= Session fixation

= Exercise — Session fixation

= Session handling best practices

= Session handling in Java

= Setting cookie attributes — best practices

= Cross site request forgery (CSRF)

CSRF prevention
CSRF prevention in Java frameworks

www.scademy.com/courses Developing motivated

training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Sensitive data exposure
= Transport layer security
= XML external entity (XXE)
= XML Entity introduction
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation
= XML external entity attack — parameter entities

XML external entity attack - parameter entities

= Exercise — XXE attack

= Parameter entities can be used only within DTD definition and
behave more like code macros

» Preventing entity-related attacks - Aluromnuna 1o s o orter o B oo D10
definition
= (ase study — XXE in Google Toolbar e

<roottagrdsend; ¢/roottag>

= Broken access control

* Content of the my. dtd file

= Typical access control weaknesses

= Insecure direct object reference (IDOR)
= Exercise — Insecure direct object reference
= Protection against IDOR
= (ase study — Facebook Notes
» (ross-Site Scripting (XSS)
= Persistent XSS
= Reflected XSS
= DOM-based XSS
= Exercise — Cross Site Scripting
= XSS prevention
= XSS prevention tools in Java and JSP
= Qutput encoding APl in C#
= XSS protection in ASP.NET — validateRequest
= \Web Protection Library (WPL)

Day 2

Client-side security

= JavaScript security
= Same Origin Policy

» (ross Origin Resource Sharing (CORS) P

» Exercise — Client-side authentication g | %
« Simple request)

* (lient-side authentication and password management oot [

-Types |
urlencoded | —

only from the same origin
if the request came from a JavaScript, an

* Protecting JavaScript code
» (lickjacking
= Exercise — Do you Like me?

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Protection against Clickjacking
= Anti frame-busting — dismissing protection scripts
= Protection against busting frame busting

Rule 1 of implementing cryptography

Practical cryptography

« Rule #1 of implementing cryptography

* Rule #1 of implementing cryptography ..., i i

= (ryptosystems
= Elements of a cryptosystem

plementations from established libraries is
'@ and more efficient anyway

= Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography

= Symmetric encryption algorithms
= Modes of operation

= Other cryptographic algorithms
= Hash or message digest
= Hash algorithms
= SHAttered
= Message Authentication Code (MAC)

= Providing integrity and authenticity with a symmetric key.......... u—_G————————— e

= Random numbers and cryptography 7

= (Cryptographically-strong PRNGs S T— W —

= Hardware-based TRNGs = — EE
= Asymmetric (public-key) cryptography T ﬂ‘-/j

= Providing confidentiality with public-key encryption

= Rule of thumb - possession of private key
= Combining symmetric and asymmetric algorithms

» Public Key Infrastructure (PKI)
= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= C(Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Foundations of Java security

= The Java environment

* Low-level security — the Java language and environment
= Javalanguage security
= Type safety

Automatic memory management

Java execution overview

Bytecode Verifier

Class Loader

= Protecting Java code

» High-level security — access control = (=)
= Protection domains ' — '

Security Manager and Access Controller

Permission checking

Effects of doPrivileged

Exercise Jars — Granting permission to signed code

Java security services

» Java security services — architecture

= Java Cryptographic Architecture
= Java Cryptography Architecture / Extension (JCA/JCE) s copgupy e e (e
= Using Cryptographic Service Providers

= Engine classes and algorithms
= Exercise Sign — Generating and verifying signatures

.NET security architecture and services

= Using transparency attributes
= Allow partially trusted callers

» Exercise — using transparency attributes

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 3

Common coding errors and vulnerabilities

* [nput validation
= |nputvalidation concepts

Integer problems
» Representation of negative integers
* Integer overflow
= Exercise IntOverflow
» Whatis the value of Math.abs(Integer.MIN _VALUE)?
» Integer problem — best practices

Path traversal vulnerability
= Path traversal - best practices

Unvalidated redirects and forwards
= Log forging
» Some other typical problems with log files
» Improper use of security features
= Typical problems related to the use of security features
= Insecure randomness
» Weak PRNGs in Java
= Weak PRNGs in .NET

= Exercise RandomTest
= Using random numbers in Java — spot the bug!

* Password management

= Exercise — Weakness of hashed passwords

Password management and storage

= Password management and storage

* Hashed passwords are still vulnerable to

» Special purpose hash algorithms for password storage : g bk L' et
= Argon2 and PBKDF2 implementations in Java ; A

= bcrypt and scrypt implementations in Java
= Argon2 and PBKDF2 implementations in NET
= bcrypt and scrypt implementations in .NET

etter: use passphrase)
e berypt o PBKDF2

i

» (Case study - the Ashley Madison data breach
= Typical mistakes in password management
= Exercise — Hard coded passwords
= Accessibility modifiers
» Accessing private fields with reflection in Java

» Exercise Reflection — Accessing private fields with reflection

= Exercise ScademyPay — Integrity protection weakness

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Improper error and exception handling

= Typical problems with error and exception handling

= Empty CAtCh DIOCK ..o,
= Qverly broad throws

= Qverly broad catch

= Using multi-catch

= (Catching NullPointerException

= Exception handling — spot the bug!

= Exercise ScademyPay — Error handling
= Exercise — Error handling

Code quality problems
= Dangers arising from poor code quality
= C(lass not sealed — object hijacking
= Exercise — Object hijacking
= Immutable string — spot the bug!
= Exercise — Immutable strings
= Using SecureString
= Serialization - spot the bug!
= Exercise Serializable Sensitive

Principles of security and secure coding

Matt Bishop's principles of robust programming

The security principles of Saltzer and Schroeder

Knowledge sources

Secure coding sources — a starter kit
Vulnerability databases

Java secure coding sources

NET secure coding guidelines at MSDN
NET secure coding cheat sheets
Recommended books — Java
Recommended books — .NET and ASP.NET

www.scademy.com/courses
training(@scademy.com

Empty catch block

= Almost all attacks start with the attacker breaking the programmers’

assumptions

= Wedon't handle an exception, because.

= "This method isn't going to generate any errors. .."
= "Even if an error occurs, it doesn't matter at this point..."

try {

}

doExchange();

cateh (Raroéxcoption o) {
this can never happ

}

and when the error does happen, the program loses the
exception and makes it harder to detect the cause of the problem
and fix the bug

= If the string-handling data structure stores some sensitive
data, its features are even more critical
+ Immutability - several copies may exist in the memory
* Disposability ~ can we dismiss it from the memory as soon as
it is no longer needed?

* SecureString is disposable and mutable
* Can be disposed regardiess of the garbage collector
= Can be made immutable by calling MakeReadOnly()
* This cannot be undone

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

