scademy

10S security

CL-IOS | Classroom | 2 days

Audience: iOS application developers, architects and testers
Preparedness: General iOS application development
Exercises: Hands-on

i0OS is a mobile operating system distributed exclusively for Apple hardware and designed with
security at its core; key security features including sandboxing, native language exploit mitigations or
hardware supported encryption all offer a very effective environment for secure software
development. The devil is however in the details — a programmer can still commit plenty of mistakes
to make the resulting apps vulnerable. This course introduces the iOS security model and the usage
of various components, but also deals with relevant vulnerabilities and attacks, focusing on the
mitigation techniques and best practices for avoiding them.

Recommended for programmers developing apps who want to understand the security features of iOS as
well as the typical mistakes one can commit on this platform.

Outline:

IT security and secure coding

I0S security overview

i0S application security

Common coding errors and vulnerabilities
Buffer overflow protection on iOS
Testing i0OS code

Principles of security and secure coding
Knowledge sources

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding
Learn the security solutions on iPhone

Learn to use various security features of i0OS

Learn about typical coding mistakes and how to avoid them

Get information about some recent vulnerabilities of i0OS

Get practical knowledge in using security testing tools for i0S

Get sources and further readings on secure coding practices

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Related courses:

e CL-AND - Android security (Classroom, 3 days)
e (CL-AAN - Android Java and native code security (Classroom, 4 days)

e CL-AIS - Android and iOS security (Classroom, 4 days)

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a
pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Detailed table of contents

Day 1

IT security and secure coding

» Nature of security
* What s risk?
» |T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

= Nature of security flaws

= Reasons of diffiCulty ...

= From an infected computer to targeted attacks

= The Seven Pernicious Kingdoms

= OWASP Top Ten 2017

= OWASP Mobile Top Ten 2016 (release candidate)

iOS security overview

» i0S platform security basics
= Evolution of iOS security features

= i0S architecture
= i0S security architecture

» i0S sandboxing and app interactions
= Sandbox concepts
= TheiOS application sandbox
= TheiOS sandbox directories
= Inter-app communication basics
= Extensions and sandboxing

= Securing data storage
= Data Protection overview
= Key generation and storage
= Disk and file encryption
= Keybags
= Data Protection classes
= Keychain Data Protection classes

www.scademy.com/courses
training(@scademy.com

= System-level security

= Encryption / data protection
* App security

= ApplePay

= Secure services
= Device management —
= Privacy controls e o

Reasons of difficulty

* 1% reason: Itis an unbalanced fight
Available time and resources of the developers vs. motivation and
preparedness of hackers

« 2% reason: Security testing is challenging

Functional testing checks for how the system should work, while in case of

security it is about how the system should not wor

= 3 reason: Weak business motivation by market forces

Due to the technical difficulties of measuring the level of security, there is

no real customer enforced competition

* 4" reason: End-users suffer from the damage
Developers are not motivated enough financially

* Secure boot and update, Secure Enclave

= Passcode, Keychain
* Data encryption, keybags ~

* Code signing, runtime security
= Data Protection

= Secure Elements e

Image source: Official 05 Securty Guide

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Deploying applications
= App verification
= Developer registration
= (Code signing
= Apple's review process
= |llicit 'app store optimization'

iOS application security
» jOS permissions

= Using permissions
= Settings — privacy view

4 SinceiOS 5

= iOS permissions — compared to Android PR ——
= Settings > Privacy

= Entitlements vs permissions « Can alowidisllow access o these
services on an app-by-app basis

= Permissions — best practices e

= \Writing secure i0S applications
= Privilege Separation
= |local data storage
= Storing local data in the Keychain
= Exercise: managing local data
= Keychain sharing vulnerability due to Apple provisioning
bug
= Developing secure networked applications
= Local file encryption

» Protecting applications
= FairPlay DRM for iOS apps
= Third-party DRM pitfalls
= Obfuscation and encryption
= Securing inter-app communication — URL schemes

» Reverse engineering and debugging
= Reverse engineering tools
= Decrypting iOS Applications
= Application Class dump
= Reverse engineering with IDA Pro
= |DA Pro basics
= |DA Pro tips

= |DA Pro string view
= |IDA Pro — Objective-C methods ...
= |IDA Pro - Objective-C method call

www.scademy.com/courses Developing motivated

training@scademy.com

secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 2

Hard-coded passwords

Interacting with Objective-C

Read process memory with Cycript
Runtime analysis with GDB

Some useful GDB commands

Dumping Objective-C method calls with GDB
Purpose of jailbreaking

Types of jailbreaking

Consequences of jailbreaking

Jailbreak detection with file checking
Jailbreak detection with sandbox checking
Jailbreak detection with Cydia URL scheme
Removing Jailbreak detection with Cycript
Hook library calls with Cycript

Jailbreak detection consequences

Debug prevention with ptrace

Debug prevention with assembly code
Debugger detection

Further debugger detection techniques
Anti-debugging best practices

Common coding errors and vulnerabilities

* |nput validation

Input validation concepts
Injection flaws
= JSON Injection
UIWebView vulnerabilities
» Dangers of UWebView
» Areal-world vulnerability: Skype for i0S (2011)
XML vulnerabilities

» XML External Entity (XXE) injection

Integer problems in Objective-C
* Integer overflow
» Integer overflow — Objective-C best practices

www.scademy.com/courses
training(@scademy.com

https://mattmccutchen.netibig
= Check for overflow in advance

t#(acellbca

ber or a Big Integer library, e.g
net/bigint/

11a+0b> s1zemx) {

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Other input validation problems
= Path manipulation / path traversal
» Unsafe reflection — spot the bug!
= Format string vulnerability

Buffer overflow protection on iOS

= ARM architecture

ARM Processors — main registers
The function calling mechanism in ARM

= Buffer overflow

= Protection techniques and their circumvention

Buffer overflow on the stack

Exercises — trying to exploit a buffer overflow
Fortify_source check

Buffer overflow on the stack 2

Stack smashing protection 0N i0S........ovveneneeenes
Effects of stack smashing protection
Bypassing stack smashing protection
CVE-2011-1823 in vold's method — Spot the bug!
Exercise — vold vulnerability
Exercise — vold vulnerability exploit analysis
WWW exploit with .got overwrite
WWW exploit
Address Space Layout Randomization (ASLR)
Randomization with ASLR
Data Execution Prevention (DEP) / Execute-Never (XN) bit
Bypassing ASLR, XN and stack protection
Information leakage
Information leakage with use after free
Virtual method call
Code execution with use after free
Return oriented programming (ROP)

= Creating ROP chain

= Exploit using ROP
Signing and integrity protection
Access control

= Storing sensitive data on i0S

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Improper error and exception handling
= Typical problems with error and exception handling
= Errors vs exceptions
= Empty catch block

= Qverly broad catch « Ao o atcks start vith h atackor esking th programmers
assumptions
= Wedon't handle an exception, because

= Null pointers in Objective C - T mthos i g genrt ry s

= "Even if an error occurs, it doesn't matter at this point...”

= Exercise ErrorHandling — spot the bug!

L
}
Besten
»

= Exercise — Error handling
= ... and when the error does happen, the program loses the
™ IOS an d OS X H TTPS ke\/ Ve r I fl Catl O n ::;eho:l?::;\:gmakes it harder to detect the cause of the problem

» Time and state problems
= Time and state related problems
= Serialization errors (TOCTTOU)
= Race condition in signal handling

» (ode quality problems
= Dangers arising from poor code quality
= Poor code quality — spot the bug!
= Unreleased resources

= Type mismatch — Spot the bug!

= Regular expression DOS (ReDQS) < Unvoliasad resoioss ony rassnl LRy Broblst s the
user, but to an attacker, they might be used as a basis for a
DoS attack
™ C h « Most common reasons
ryptography * Eromor 1o
released when these occur)
H = In a complex program it is not aiw obvious who should
= (Cryptography oniOS el

» Digital Rights Management (DRM)
= DRM architecture
= i0S DRM overview
= Challenges of DRM protection

= DRM protection without hardware support - hardening
= DRM protection — decrypted content

i0S-specific vulnerabilities and bugs

Testing iOS code

» General testing approaches

» TestingiOS code
= Exercise - Clang

= QOCLint
= Exercise — OCLint
= (CppCheck

= Exercise — CppCheck

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit

» Vulnerability databases

= i0S secure coding sources (@ Apple Developer
» Recommended books — C/C++

= Recommended books —i0S

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

