scademy

C and C++ security master course

CL-CSM | Classroom | 5days
Variants: x86, x64, ARM

Audience: C and C++ developers, software architects and testers
Preparedness: Advanced C/C++ development
Exercises: Hands-on

As a developer, your duty is to write bulletproof code. However...

What if we told you that despite all of your efforts, the code you have been writing your entire career
is full of weaknesses you never knew existed? What if, as you are reading this, hackers were trying to
break into your code? How likely would they be to succeed?

This advanced course will change the way you look at code. A hands-on training during which we will
teach you all of the attackers' tricks and how to mitigate them, leaving you with no other feeling than
the desire to know more.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against
cybercrime.

Outline:

IT security and secure coding

x86 machine code, memory layout and stack operations
Buffer overflow

Common coding errors and vulnerabilities
Requirements of secure communication
Practical cryptography

XML security

Security protocols

Security in the software development lifecycle
Security testing

Security testing techniques and tools
Deployment environment

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding
Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses
Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries
Understand the requirements of secure communication

Have a practical understanding of cryptography

Learn about XML security

Understand essential security protocols

Understand some recent attacks against cryptosystems

Understand security considerations in the SDLC

Understand security testing approaches and methodologies

Get practical knowledge in using security testing techniques and tools
Learn how to set up and operate the deployment environment securely

Get sources and further readings on secure coding practices

Related courses:

e CL-CPS - Cand C++ secure coding (Classroom, 3 days)

e (CL-CCP - Comprehensive Cand C++ secure coding (Classroom, 4 days)

e (L-CJW - Combined C/C++, Java and Web application security (Classroom, 4 days)
e CL-CNA - Combined C#, C/C++ and Web application security (Classroom, 4 days)
e (CL-AAN - Android Java and native code security (Classroom, 4 days)

e CL-STS - Security testing (Classroom, 3 days)

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a
pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Detailed table of contents

Day 1

IT security and secure coding

Nature of security
What is risk?
IT security vs. secure coding

From vulnerabilities to botnets and cybercrime

= Nature of security flaws

= Reasons of difficulty ...,

= From an infected computer to targeted attacks

Classification of security flaws
= landwehr’s taxonomy
= The Seven Pernicious Kingdoms
= OWASP Top Ten 2017

x86 machine code, memory layout and stack
operations

Intel 80x86 Processors — main registers

Intel 80x86 Processors — most important instructions

Intel 80x86 Processors — flags

Intel 80x86 Processors — control instructions

Intel 80x86 Processors — stack handling and flow control

The memory address layout
The function calling mechanism in C/C++ on x86
Calling conventions

The local variables and the stack frame

Function calls — prologue and epilogue of a function

Stack frame of nested calls

Stack frame of recursive functions

www.scademy.com/courses
training(@scademy.com

Reasons of difficulty

* 1% reason: Itis an unbalanced fight
Available time

resources of the developers vs. motivation and
prepareds ¢

« 2 reason: Security testing is challenging
Functional testing checks for how the system should work, while in case of
security itis about how the system should not work

= 3"reason: Weak business motivation by market forces
Due to the technical difficulties of measuring the level of security, there is
no real customer enforced competition

= 4" reason: End-users suffer from the damage
ivated enough financially

‘The function calling mechanism in CIC+# on xB8

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Buffer overflow

= Stack overflow
= Buffer overflow on the stack
= Qverwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The PreDeCo matrix of software security
= Stack overflow — Prevention (during development)
= Stack overflow — Detection (during execution)
= Fortify instrumentation (FORTIFY _SOURCE)
= Exercise BOFShellcode — Fortify

Day 2

Buffer overflow

= Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection

= Bypassing stack smashing protection — an example..............

= Qverwriting arguments — Mitigation
» Address Space Layout Randomization (ASLR)
= Randomization with ASLR
= Using ASLR
= Practical weaknesses and limitations to ASLR
= Circumventing ASLR: NOP sledding

» Non executable memory areas — the NX bit
= Access Control on memory segments
= The Never eXecute (NX) bit

= Exercise BOFShellcode — Enforcing NX memory segments

= Return-to-libc attack — Circumventing the NX bit protection

= (Circumventing memory execution protection
= Return-to-libc attack

www.scademy.com/courses
training(@scademy.com

Bypassing stack smashing protection - an example

« By ovenwriting not only the ret
h are on the s

their
ere: buffer (filed with injected data) is
pointed to by output
= Dete ke place, but that'’s too late, because

o y been used

already

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Return oriented programming (ROP)
= Exploiting with ROP
= ROP gadgets
= ROP mitigation
= Mitigation techniques of ROP attack
* Heap overflow
= Memory allocation managed by a doubly-linked list
= Buffer overflow on the heap
= Steps of freeing and joining memory blocks
= Freeing allocated memory blocks
= (ase study — Heartbleed

. .
TLS Heartbeat EXEENSION ..o eeeeeeeeeeeee e eesee st sneeeen — =
= Heartbleed - information leakage in OpenSSL
P * OpenSSL is a widely used crypto library
L} Heartbleed —_ fIX n V1 O 1 g « TLS Heartbeat Extension was introduced in v1.0.1
= It sends "keep alive" packets between parties (default)

= Request / reply not only confirm that session is open, but also
that end-to-end connectivity is
« The sent payload is replied => could be decrypted

Protection against heap overflow

5] Cose study

= The request packet looks like the following:
« TLS1_HB_REQUEST (1byte, =0x81)
. f 2 =
Common coding errors and vulnerabilities Pt g
= Payload — random data (16 bytes)
= Padding — further random data (16 bytes)

* [nputvalidation
= |nput validation concepts

= Integer problems
= Representation of negative integers

= Integerranges = Sign b positve bnary vakie
-19 = 16010011
= Integer overflow 2 oo s SoEnat
* Two zero values

u |nteger pr0b|emS in C/C++ * One’s complement mvef;zﬂ ?Zuenea

. . . = Addition -> addition + 1 (19+-19+1=0)
= Theinteger promotion rule in C/C++ ? Subtacon > subracion - 1 (6-19-12-15)

. . * Two's complement: inverted bits + 1
L) Arlthmetlc OVerﬂOW - Spot the bugl) <19 = 1110101
. - Sivontion = sipkcton (ooion19)

= Exercise IntOverflow . O ahe

= Whatis the value of abs{INT _MIN})?
= Signedness bug — spot the bug!
= Integer truncation — spot the bug!
= Integer problem - best practices
= (Case study — Android Stagefright
= Injection
= Injection principles
= SQL Injection exercise
= Typical SQL Injection attack methods
= Blind and time-based SQL injection
= SQL Injection protection Methods ...

* May aiso fiter out
* Prepared statements
= Use a constant string + an API instead of string concatenation

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Printf format string bug
= Printf format strings
= Printf format string bug — exploitation
= Exercise Printf
= Printf format string exploit — overwriting the return address

Mitigation of printf format string problem

Some other input validation problems
= Array indexing — spot the bug!
= Off-by-one and other null termination errors
= The Unicode bug

Path traversal vulnerability
= Path traversal — best practices

Log forging
= Some other typical problems with log files

» Time and state problems

Time and state related problems
Serialization errors (TOCTTOU)

Attacks with symbolic INKS ..o
Exercise TOCTTOU

ttacks with symbolic links

Day 3

Requirements of secure communication

= Security levels

= Secure acknowledgment

= Malicious message absorption
= Feasibility of secure acknowledgment
= The solution: Clearing Centers

= |nadvertent message loss
* Integrity
= Error detection - Inadvertent message distortion (noise)

= Modeling message distortion
= Error detection and correction codes

= Authenticity - Malicious message manipulation
= Modeling message manipulation ...,

Manipulated (received)

= Practical integrity protection (detection) Domanset Senimessae messae
= Non-repudiation ’ ‘
= Summary @ @
= Detecting integrity violation Vatd messages

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Confidentiality
= Model of encrypted communication
= Encryption methods in practice
= Strength of encryption algorithms

» Remote identification
= Requirements of remote identification

» Anonymity and traffic analysis
= Model of anonymous communication
= Traffic analysis
= Theoretically strong protection against traffic analysis
= Practical protection against traffic analysis

= Summary
= Relationship between the requirements

Practical cryptography T ——

* Rule #1 of implementing cryptography

"Don't do it!"

* Rule #1 of implementing cryptography ...

= Don'tinvent your
»= (Cryptosystems = v bomors
= Itis security by obscurity

= Elements of a cryptosystem

* Don'timplement existing algorithms either
. Usi tations from established ibraries is

= Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography

= Symmetric encryption algorithms
= Modes of operation
= Other cryptographic algorithms
= Hash or message digest
= Hash algorithms
= SHAttered
= Message Authentication Code (MAC)
= Providing integrity and authenticity with a symmetric key S

= Random numbers and cryptography
= Cryptographically-strong PRNGs
= Hardware-based TRNGs

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Asymmetric (public-key) cryptography
= Providing confidentiality with public-key encryption
= Rule of thumb — possession of private key
= The RSA algorithm
= Introduction to RSA algorithm
= Encrypting with RSA
= Combining symmetric and asymmetric algorithms
= Digital signing with RSA
» Public Key Infrastructure (PKI)
= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= (Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

XML security

= XML injection
= (Ab)using CDATA to store XSS payload in XML
= Exercise — XML injection
= Protection through sanitization and XML validation

= Abusing XML Entity
= XML Entity introduction
= XML bomb
= Exercise — XML bomb
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation
= XML external entity attack — parameter entities ...
= Exercise — XXE attack

= Preventing entity-related attacks

nt of a file using a remote DTD

= (ase study — XXE in Google Toolbar

+ Content of the my. dtd file

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 4

Security protocols

= Secure network protocols
= Specific vs. general solutions

= |PSEC protocol family
= |PSEC standards
= Security Association (SA)
= Message formats
= AH packet structure
= ESP packet structure
= Protected channels
= More complex set-ups
= Traffic control
= SAstructure
= Key management

= SSL/TLS protocols
= Security services

SSL/TLS handshake

= Protocol-level vulnerabilities

BEAST
FREAK

= FREAK - attack against SSL/TLS
= Logjam attack

» Padding oracle attacks
= Adaptive chosen-ciphertext attacks
= Padding oracle attack
= (BCdecryption
= Padding oracle example

= Lucky Thirteen

lzlefele]xJa]e

‘ |
= POODLE o "

2lefs]afs]=[a]e

s[s[a[r]zs[o]

oo [+[s[s [[a[w]e[s]x[s[s]<[s

Common coding errors and vulnerabilities | i —— ———

|
|
a[nfefelp[alxx]
|
|

» Improper use of security features

= Typical problems related to the use of security features

= |nsecure randomness
= Weak PRNGs in Cand C++
= Stronger PRNGs in C

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Password management

= Exercise — Weakness of hashed passwords
= Password management and storage
= Special purpose hash algorithms for password storage
= Argon2 and PBKDF2 implementations in C/C++

= bcrypt and scrypt implementations in C/C++

= (ase study - the Ashley Madison data breach

= Typical mistakes in password management

= Exercise — Hard coded passwords

= Sensitive information in memory

Protecting secrets in memory
Minimize the attack surface

Core dumps

Disabling core dumps

Swapping

Preventing swapping

Problems with page locking

Your secrets vs. dynamic memory
Zeroisation

Optimization vs. zeroisation — Spot the bug!
Best practices

» Improper error and exception handling

Typical problems with error and exception handling

Empty catch BIOCK ..o

Overly broad catch
Exercise ErrorHandling — spot the bug!
Exercise — Error handling

Case study — "#iamroot" authentication bypass in macOS
= Authentication process in macOS (High Sierra)
= Incorrect error handling in opendirectoryd
= The #liamroot vulnerability (CVE-2017-13872)

» (Code quality problems

Dangers arising from poor code quality
Poor code quality — spot the bug!
Unreleased resources

Type mismatch — Spot the bug!
Exercise TypeMismatch

www.scademy.com/courses
training(@scademy.com

* Hashed passwords are still vulnerable to

* Best practices

nagement and storage

» Password guessing: blank, user's name, etc R
= Dictionary attacks

* Can be also done with search engines
* Brute force attacks

* Supported by pre-computed Rainbow tables

= Enforce password policy (even better: use passphrase)
= Use a slow hash function, like berypt or PBKDF2
* Salting o

Empty eateh block

« Amost all attacks start with the attacker breaking the programmers’
assumptions
= Wedon't handle an exception, because
= “This method isn't going to generate any errors..."
= "Even if an error occurs, it doesn't matter at this point..."

and when the error does happen, the program loses the
exception and makes it harder to detect the cause of the problem
and fix the bug

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Memory allocation problems
= Smart pointers
= Zero length allocation
= Double free
= Mixing delete and delete[]
= Use after free
= Use after free — Instance of a class
= Spot the bug
= Use after free — Dangling pointers
= (asestudy - WannaCry
= The WannaCry ransomware
= The vulnerability behind WannaCry - spot the bug!
= |essons learned

Day 5

Security in the software development lifecycle

» Building Security In Maturity Model (BSIMM)

= Software Assurance Maturity Model (SAMM)
» Microsoft Security Development Lifecycle (SDL)

Microsoft Security Development Lifecycle (SDL)

Security testing

» Functional testing vs. security testing

= Security vulnerabilities SR G

= Prioritization — risk analysis

= Security in the SDLC

= Security assessments in various SDLC phases
= Security testing methodology

= Steps of test planning (risk analysis)

= Scoping and information gathering
= Stakeholders
= Assets

= Security objectives for testing

= Threat modeling
= Attacker profiles

= Threat modeling

= Threat modeling based on attack trees

= Threat modeling based on misuse/abuse cases
= Misuse/abuse cases — a simple example

= SDL threat modeling

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= The STRIDE threat categories

= Diagramming — elements of a DFD

= Data flow diagram — example

= Threat enumeration — mapping STRIDE to DFD elements

= Risk analysis — classification of threats

= The DREAD risk assessment model
Testing steps

= Deriving test cases

= Accomplishing the tests

= Processing test results

= Mitigation concepts

= Standard mitigation techniques of MS SDL

= Review phase

Security testing techniques and tools

General testing approaches

Design review

Assessment of security requirements
Identifying security-critical aspects — hotspots

Source code review

Code review for software security
Taint analysis
Heuristic-based

Static code analysis
= Exercise — Static code analysis using FlawFinder

Testing the implementation

Dynamic security testing
Manual vs. automated security testing
Penetration testing
Stress tests
Binary and memory analysis
= Exercise — Binary analysis with strings
Instrumentation libraries and frameworks
= Exercise — Using Valgrind

Fuzzing
= Automated security testing - fuzzing
= Challenges of fuzzing
= Exercise — Fuzzing with AFL {American Fuzzy Lop)

Deployment environment

Configuration management

www.scademy.com/courses
training(@scademy.com

= Objective: To identify threats for each data flow diagram

element in the threat model

External entty

Process

Data Stare

Data Flow

)\|9Q

Automated security testing - fuzzing

+ Fuzzing: systematic modification of binary input serving

as test vectors

= Fuzzing with random inputs (the initial idea)
* Fuzzing based on pre-defined inputs
= Reactively iterating fuzzing

= Examples of typical bugs that can be found

* Buffer Overflow

* Successive approximation NG|

(binary search)
» Signedness bug

= Integer Overflow

REJECTION

_—
if ((unsigned int) 1 < 8)

1F (1256 <= 1024)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

* Hardening
» Patch management

» Assessing the environment
= Password audit
= Exercise — using John the Ripper

* \ulnerability management

Vulnerability repositories

= Vulnerability repositories

* OWASP Dependency-Check

» Vulnerability attributes T e e
= Common Vulnerability Scoring System — CVSS ’ V'JCE""“’Y“”’W o

= Vulnerability scanners Ezs"'s"w'f :

= (ase study - Shellshock " VR Duake o

= CVE Search: hig

= Shellshock — basics of using functions in bash
= Shellshock - vulnerability in bash

. EXercise - ShellshoCK .. i
= Shellshock fix and counterattacks

= Exercise — Command override with environment variables

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
= Vulnerability databases

= Recommended books — C/C++

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

