scademy

Combined C#, C/C++ and Web application
security

CL-CNA | Classroom | 4 days

Audience: C/C++, G and Web application developers, architects and testers
Preparedness: Advanced C/C++, C# and Web development
Exercises: Hands-on

Serving teams that use managed code (.NET and ASP.NET typically written in C#) together with
native code development (typically C/C++), this training gives a comprehensive overview of the
security issues in both environments.

Concerning C/C++, common security vulnerabilities are discussed, backed by practical exercises about
the attacking methods that exploit these vulnerabilities, with the focus on the mitigation techniques
that can be applied to prevent the occurrences of these dangerous bugs, detect them before market
launch or prevent their exploitation.

The course also covers both the various general (like web services) and specific security solutions and
tools, and the most frequent and severe security flaws of managed code, dealing with both
language-specific issues and the problems stemming from the runtime environment. The
vulnerabilities relevant to the ASP.NET platform are detailed along with the general web-related
vulnerabilities following the OWASP Top Ten list. The course consists of a number of exercises
through which attendees can easily understand and execute attacks and protection methods.

Outline:

IT security and secure coding

Web application security (OWASP Top Ten 2017)
Client-side security

NET security architecture and services

Practical cryptography

x86 machine code, memory layout and stack operations
Buffer overflow

Some additional native code-related vulnerabilities
Common coding errors and vulnerabilities
Principles of security and secure coding
Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding

Learn Web vulnerabilities beyond OWASP Top Ten and know how to avoid them

Learn about XML security

Learn client-side vulnerabilities and secure coding practices

Learn to use various security features of the .NET development environment

Have a practical understanding of cryptography

Realize the severe consequences of unsecure buffer handling in native code

Understand the architectural protection techniques and their weaknesses

Realize the severe consequences of unsecure buffer handling

Learn about typical coding mistakes and how to avoid them

Get sources and further readings on secure coding practices

Related courses:

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a

CL-NWA - C# and Web application security (Classroom, 3 days)

CL-JNW - Combined Java, C# and Web application security {Classroom, 3 days)
CL-CJW - Combined C/C++, Java and Web application security (Classroom, 4 days)
CL-WSC - Web application security (Classroom, 3 days)

CL-WTS - Web application security testing (Classroom, 3 days)

CL-CSM - Cand C++ security master course (Classroom, 5 days)

CL-NSM - C# and Web application security master course (Classroom, 5 days)

pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

» Nature of security
* What s risk?
» |T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

= Nature of security flaws

Reasons of difficulty

= Reasons of diffiCulty ...

i = 1% reason: It is an unbalanced fight
* From an infected computer to targeted attacks e bt ok g st it
« 2% reason: Security testing is challenging
Functional testing checks for how the system should work, while in case of
. . . security it is about how the system should not work
Web application security (OWASP Top Ten 2017) S ——
Due to the technical difficulties of measuring the level of security, there is
no real customer enforced competition
= A1-1 J ti + 4" reason: End-users suffer from the damage
n e C IO n Developers are not motivated enough financially

= Injection principles
= SQLinjection
= Exercise — SQL injection
= Typical SQL Injection attack methods
= Blind and time-based SQL injection
= SQLinjection protection Methods ...,

= Effect of data storage frameworks on SQL injection in .NET

(black-tist) 4 n,
/o " »‘ ' ﬂ;‘

e.g. Unicode)

= Qtherinjection flaws
= Command injection
= Command injection exercise — starting Netcat
= (ase study — ImageMagick
= (Cookie injection / HTTP parameter pollution
= Exercise — Value shadowing

= A2 - Broken authentication

= Session handling threats

= Session fixation

= Exercise — Session fixation

= Session handling best practices

= Setting cookie attributes — best practices

= Cross site request forgery (CSRF)
= (SRF prevention

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

A3 - Sensitive data exposure
= Sensitive data exposure
= Transport layer security

AL - XML external entity (XXE)
= XML Entity introduction
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation
= XML external entity attack — parameter entities
= Exercise — XXE attack
= Preventing entity-related attacks - adr

= Parameter entities can be used only within DTD definition and

defined with an additional % sign
nd the content of a file using a remote DTD

= (ase study — XXE in Google Toolbar

A5 - Broken access control

* Content of the my.dtd file

= Typical access control weaknesses

= Insecure direct object reference (IDOR)

= Exercise — Insecure direct object reference
= Protection against IDOR

= (ase study — Facebook Notes

A6 - Security misconfiguration

ASP.NET components and environment overview

Insecure file uploads
= Exercise — Uploading executable files

Filtering file uploads — validation and configuration
A7 - Cross-Site Scripting (XSS)

= Persistent XSS

= Reflected XSS

= DOM-based XSS

= Exercise — Cross Site Scripting

= XSS prevention

= Qutput encoding APl in C#

= XSS protection in ASP.NET — validateRequest

= \Web Protection Library (WPL)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 2

Web application security (OWASP Top Ten 2017)

= A8 - Insecure deserialization
= Deserialization basics
= Security challenges of deserialization
= Deserialization in .NET
= From deserialization to code execution
= POP payload targeting MulticastDelegate (C#)
= Real-world .NET examples of deserialization vulnerabilities
= |ssues with deserialization — JSON
= Best practices against deserialization vulnerabilities
» A9 - Using components with known vulnerabilities
= A10 - Insufficient logging and monitoring
= Detection and response
= Logging and log analysis
= Intrusion detection systems and Web application firewalls

Client-side security

= JavaScript security
= Same Origin Policy
» (ross Origin Resource Sharing (CORS)
= Clickjacking
= Exercise — Do you Like me?
= Protection against Clickjacking
= Anti frame-busting — dismissing protection scripts
= Protection against busting frame busting
= AJAX security
= XSSin AJAX
= Scriptinjection attack in AJAX
= Exercise — XSS in AJAX
= XSS protection in Ajax
= Exercise CSRF in AJAX — JavaScript hijacking
= (CSRF protection in AJAX

www.scademy.com/courses
training(@scademy.com

Cross Origin Resource Sharing (CORS)

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= HTMLS5 security

.NET security architecture and services

New XSS possibilities in HTML5

Form tampering

Exercise — Form tampering
Cross-origin requests

HTML proxy with cross-origin request
Exercise — Client side include

= NET architecture

» Code Access Security

Full and partial trust

Evidence classes

Permissions

Code access permission classes
Deriving permissions from evidence
Defining custom permissions

NET runtime permission checking
The Stack Walk

Effects of ASSErt() ..o

Class and method-level declarative permission
Imperative (programmatic) permission checking
Exercise — sandboxing .NET code

Using transparency attributes

Allow partially trusted callers

Exercise — using transparency attributes

Practical cryptography

* Rule #1 of implementing cryptography

= (Cryptosystems

Elements of a cryptosystem

= Symmetric-key cryptography

Providing confidentiality with symmetric cryptography

Symmetric encryption algorithms
Modes of operation

www.scademy.com/courses
training(@scademy.com

+ Reverse Web shell: a Javascript (XSS) tunneling HTTP
= XSS+ COR can ba used for tunneling HTTP traffic betwsen the user
and the attacker
= With the injected script an attacker can access vulnerable sites via the
victim's browser by sending requests over the channel

---------------- Effects of Assert) 2o scademy

* With Assert() one can perform an action "with the privilege
of the calling class", which simply means that
* The stack will be checked up to the caller of Assert ()

CodeAccessSecurityEngine.

QuickCheckForAliDemands()
System.10.Flle.Open

PlayMusic.Play(-.) :

Rule 81 of implementing cryptography

= Rule #1 of implementing cryptography
"Don't do it!"

* Don'tinvent your own algorithms
= "It will be more secure because nobody knows how it works™is a
common misconception
* Itis security by obscurity

« Don'timplement existing algorithms either
* Using available implementations from established fibraries is
more secure and more efficient anyway

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Other cryptographic algorithms
= Hash or message digest
= Hash algorithms
= SHAttered
= Message Authentication Code (MAC)

= Providing integrity and authenticity with a symmetric key ———

= Random numbers and cryptography

= (Cryptographically-strong PRNGs — e]

= Hardware-based TRNGs e — rff??
Asymmetric (public-key) cryptography = zF'_ _"z'»/“‘

= Providing confidentiality with public-key encryption

= Rule of thumb — possession of private key
= Combining symmetric and asymmetric algorithms

Public Key Infrastructure (PKI)
= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= (Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

Day 3

x86 machine code, memory layout and stack operations

Intel 80x86 Processors — main registers

Intel 80x86 Processors — most important instructions

Intel 80x86 Processors — flags

Intel 80x86 Processors — control instructions

Intel 80x86 Processors — stack handling and flow control

The memory address layout

The function calling mechanism in C/C++ on x86 m——

Calling conventions

The local variables and the stack frame

Function calls — prologue and epilogue of a function

Stack frame of nested calls

Stack frame of recursive functions

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Buffer overflow

= Stack overflow
= Buffer overflow on the stack
= Qverwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The PreDeCo matrix of software security
= Stack overflow — Prevention (during development)
= Stack overflow — Detection (during execution)
= Fortify instrumentation (FORTIFY _SOURCE)
= Exercise BOFShellcode — Fortify

= Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection
= Bypassing stack smashing protection — an example........cnne,

= Qverwriting arguments — Mitigation i
» Address Space Layout Randomization (ASLR) i

= Randomization with ASLR

= Using ASLR : %@%’:}TET&?&‘ e on e Stk (it 1 oo ecen we can

re: buffer (filled with injected data) is
ointed to by outpu

= Practical weaknesses and limitations to ASLR
= (Circumventing ASLR: NOP sledding

* Non executable memory areas — the NX bit
= Access Control on memory segments
= The Never eXecute (NX) bit
= Exercise BOFShellcode — Enforcing NX memory segments
* Return-to-libc attack — Circumventing the NX bit protection
= (Circumventing memory execution protection
= Return-to-libc attack
» Return oriented programming (ROP)
= Exploiting with ROP
= ROP gadgets

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Some additional native code-related vulnerabilities

secure coding academy

» Boundary violation

Array indexing — spot the bug!
Off-by-one and other null termination errors
The Unicode bug

» (Code quality problems

Poor code quality — spot the bug!
Unreleased resources
Type mismatch — Spot the bug!
Exercise TypeMismatch
Memory allocation problems
= Smart pointers
= Zero length allocation
= Double free
» Mixing delete and delete[]
Use after free
» Use after free — Instance of a class
= Spotthe bug
» Use after free — Dangling pointers
= (Case study - WannaCry

= Race condition

Serialization errors (TOCTTOU)
Attacks with symbolic links
Exercise TOCTTOU

» (ase study - the Shellshock bash vulnerability
= Shellshock — basics of using functions in bash

Shellshock — vulnerability in bash
= Exercise - ShellSNOCK. ... s

Shellshock fix and counterattacks
= Exercise — Command override with environment variables

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 4

Common coding errors and vulnerabilities

* [nput validation

= |nputvalidation concepts

= Integer problems

Representation of negative integers
Integer ranges

Integer overflow

Integer problems in C/C++

The integer promotion rule in C/C++
Arithmetic overflow — spot the bug!
Exercise IntOverflow

What is the value of Math.Abs(int. MinValue)?
Signedness bug — spot the bug!
Integer truncation — spot the bug!
Integer problem - best practices
Case study — Android Stagefright

= Path traversal vulnerability

Path traversal — best practices

= Unvalidated redirects and forwards

= Log forging

Some other typical problems with log files

» Improper use of security features

= Typical problems related to the use of security features

= Insecure randomness

Weak PRNGs in C and C++
Stronger PRNGs in C
Weak PRNGs in .NET

* Password management

Exercise — Weakness of hashed passwords

Password management and StOrage ...,

Special purpose hash algorithms for password storage
Argon2 and PBKDF2 implementations in C/C++

bcrypt and scrypt implementations in C/C++

Argon2 and PBKDF2 implementations in .NET

bcrypt and scrypt implementations in .NET

Case study - the Ashley Madison data breach

Typical mistakes in password management

Exercise — Hard coded passwords

www.scademy.com/courses

training(@scademy.com

Password management and storage

* Hashed passwords are still vulnerable to
= Password guessing: blank, user's name, efc.
= Dictionary attacks

* Can be also done with search engines
» Brute force attacks
* Supported by pre-
* Best practices
= Enforce password policy (even better: use passphrase)
* Use a slow hash function, lie berypt or PBKDF2
* Salting s Aot

uted Rainbow tables

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Accessibility modifiers
= Accessing private fields with reflection in .NET
» Exercise Reflection — Accessing private fields with reflection

Common coding errors and vulnerabilities

» Improper error and exception handling

= Typical problems with error and exception handling
= Empty catch block

« Almost all attacks start with the attacker breaking the programmers’
= Qverly broad catch - Wedontrer

Wedon't handle an exception, because.

Empty catch block

= "This method isn't going to generate any errors..."

- Using multi-catch

= Catching NullReferenceException - R

= Exception handling — spot the bug! © tilihee e wcionlbnes Kosume btsebe
and fix the bug

= Exercise — Error handling

» (Code quality problems
= Dangers arising from poor code quality
= Serialization — spot the bug!
= Exercise — Serializable sensitive
= (lass not sealed - object hijacking
= Exercise — Object hijacking
= |mmutable string — spot the bug!

= Exercise — Immutable strings

Using SecureString

= Using SecureString

= If the string-handling data structure stores some sensitive
data, its features are even more critical

Principles of security and secure coding ity e et i v VS

« Disposability ~ can we dismiss it from the memory as soon as
it is no longer needed?

= Matt Bishop's principles of robust programming Qi demiaani s

= Can be disposed regardless of the garbage collector
= Can be made immutable by calling MakeReadOnly()

= The security principles of Saltzer and Schroeder I

Knowledge sources

= Secure coding sources — a starter kit

» Vulnerability databases
» .NET secure coding guidelines at MSDN

NET secure coding cheat sheets
= Recommended books — C/C++
= Recommended books — .NET and ASP.NET

www.scademy.com/courses Developing motivated
training@scademy.com

secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

