scademy

Comprehensive C and C++ secure coding

CL-CCP | Classroom | 4days
Variants: x86, x64, ARM

Audience: C and C++ developers, software architects and testers
Preparedness: General C/C++ development
Exercises: Hands-on

As a developer, your duty is to write bulletproof code. However...

What if we told you that despite all of your efforts, the code you have been writing your entire career
is full of weaknesses you never knew existed? What if, as you are reading this, hackers were trying to
break into your code? How likely would they be to succeed?

This advanced course will change the way you look at code. A hands-on training during which we will
teach you all of the attackers' tricks and how to mitigate them, leaving you with no other feeling than
the desire to know more.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against
cybercrime.

Outline:

IT security and secure coding

x86 machine code, memory layout and stack operations
Buffer overflow

Practical cryptography

Security protocols

Cryptographic vulnerabilities

XML security

Common coding errors and vulnerabilities
Security testing techniques and tools
Deployment environment

Principles of security and secure coding

Knowledge sources

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Participants attending this course will:

Understand basic concepts of security, IT security and secure coding
Realize the severe consequences of unsecure buffer handling

Understand the architectural protection techniques and their weaknesses
Have a practical understanding of cryptography

Understand essential security protocols

Understand some recent attacks against cryptosystems

Learn about XML security

Learn about typical coding mistakes and how to avoid them

Be informed about recent vulnerabilities in various platforms, frameworks and libraries
Get practical knowledge in using security testing techniques and tools
Learn how to set up and operate the deployment environment securely

Get sources and further readings on secure coding practices

Related courses:

e (CL-CSM - Cand C++ security master course (Classroom, 5 days)

e (L-CJW - Combined C/C++, Java and Web application security (Classroom, 4 days)
e (L-CNA - Combined C#, C/C++ and Web application security (Classroom, 4 days)
e (L-JSM - Java and Web application security master course (Classroom, 5 days)

e (L-AAN - Android Java and native code security (Classroom, 4 days)

e CL-STS - Security testing (Classroom, 3 days)

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a
pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

» Nature of security
* What s risk?
» |T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

= Nature of security flaws

Reasons of difficulty

= Reasons of diffiCulty ...

= From an infected computer to targeted attacks e e @ e e .t

« 2% reason: Security testing is challenging
tem should work, while in case of
ot wo

Functional testing checks for how th
security it is about how the system

x86 machine code, memory layout and stack operations A ——

Due to the technical difficulties of measuring the level of security, there is
no real customer enforced competition

] |nte| 80x86 Processors — main registers « 4" reason: End-users suffer from the damage

D ted enough financially

» Intel 80x86 Processors — most important instructions

* Intel 80x86 Processors — flags

* Intel 80x86 Processors — control instructions

* Intel 80x86 Processors — stack handling and flow control
= The memory address layout

» The function calling mechanism in C/C++ on x86 o ko oo i i i o

» (alling conventions

= The local variables and the stack frame

» Function calls — prologue and epilogue of a function

= Stack frame of nested calls

= Stack frame of recursive functions

Buffer overflow

= Stack overflow
= Buffer overflow on the stack
= Qverwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The PreDeCo matrix of software security
= Stack overflow — Prevention (during development)
= Stack overflow — Detection (during execution)
= Fortify instrumentation (FORTIFY _SOURCE)
= Exercise BOFShellcode — Fortify

» Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection

» Address Space Layout Randomization (ASLR)
= Randomization with ASLR
= Practical weaknesses and limitations to ASLR
= (Circumventing ASLR: NOP sledding

* Non executable memory areas — the NX bit

= Access Control on memory segments
= The Never eXecute (NX) bit

Day 2

Buffer overflow

» Return-to-libc attack — Circumventing the NX bit protection
= (Circumventing memory execution protection
= Return-to-libc attack

» Return oriented programming (ROP)
= Exploiting with ROP
= ROP gadgets
= ROP mitigation
» Mitigation techniques of ROP attack
» Heap overflow
= Memory allocation managed by a doubly-linked list
= Buffer overflow on the heap
= Steps of freeing and joining memory blocks
= Freeing allocated memory blocks

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= (ase study — Heartbleed
= TLS Heartbeat Extension
= Heartbleed - information leakage in OpenSSL

L. « OpenSSL is a widely used crypto library
= Heartbleed - fixin v1.0.1 g + TLS Heartbeat Extension was introduced in v1.0.1
* It sends "keep alive" packets between parties (default)
= Request/ reply not only confirm that session is open, but also

= Protection against heap overflow B e s

8] * The request packetlooks like the following
* TLS1_HB_REQUEST (1byte, =0x81)
= Size of the payload plus the padding (2 bytes, =34)
« Payload - sequence number (2 bytes)
= Payload — random data (16 bytes)
= Padding — further random data (16 bytes)

Practical cryptography e
. . * Rule #1 of implementing cryptography
* Rule #1 of implementing cryptography.......coocerciisniisciicnn, Wi R
* Cryptosystems e s SRR

common misconception
* Itis security by obscurity

= Elements of a cryptosystem

« Don'timplement existing algorithms either
* Using available implementations from established fibraries is
more secure and more efficient anyway

= Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography

= Symmetric encryption algorithms
= Modes of operation

» Other cryptographic algorithms
= Hash or message digest
= Hash algorithms
= SHAttered
= Message Authentication Code (MAC)
= Providing integrity and authenticity with a symmetric rrtng gty et sy wen e

= Random numbers and cryptography

= (Cryptographically-strong PRNGs
= Hardware-based TRNGs
» Asymmetric (public-key) cryptography
= Providing confidentiality with public-key encryption

Open channel |

= Rule of thumb - possession of private key
= The RSA algorithm
= Introduction to RSA algorithm
= Encrypting with RSA
= Combining symmetric and asymmetric algorithms
= Digital signing with RSA
» Public Key Infrastructure (PKI)
= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= C(Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Security protocols

= Secure network protocols
= Specific vs. general solutions
= SSL/TLS protocols

= Security services
= SSL/TLS handshake

Cryptographic vulnerabilities

» Protocol-level vulnerabilities
= BEAST
= FREAK
= FREAK - attack against SSL/TLS
= lLogjam attack

» Padding oracle attacks
= Adaptive chosen-ciphertext attacks
= Padding oracle attack
= (BCdecryption
= Padding oracle example
= Lucky Thirteen
= POODLE

XML security

» Introduction
» XML parsing
= XML injection
= (Ab)using CDATA to store XSS payload in XML
= Exercise — XML injection
= Protection through sanitization and XML validation

= Abusing XML Entity
= XML Entity introduction
= XML bomb
= Exercise — XML bomb
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation

= XML external entity attack — parameter entities....................

www.scademy.com/courses
training(@scademy.com

o[[o]]x <]][]

‘ !
o] =]
AEEP R EE R
e SRR R EEERE

el s R]

PADDING_ERROR

be used only within DTD definition and
macros
fined with an additional % sign

use it to send the content of a file using a remote DTD

t of the my. dtd file

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Exercise — XXE attack
= Preventing entity-related attacks
= (ase study — XXE in Google Toolbar

Day 3

Common coding errors and vulnerabilities

* [nput validation
= Input validation concepts

= Integer problems
= Representation of negative integers
= Integerranges
= Integer overflow
= Integer problems in C/C++
= Theinteger promotion rule in C/C++
= Arithmetic overflow — spot the bug!
= Exercise IntOverflow
= Whatis the value of abs{INT _MIN})?
= Signedness bug — spot the bug!
= Integer truncation — spot the bug!
= Integer problem - best practices
= (Case study — Android Stagefright

= Injection
= Injection principles
= SQL Injection exercise
= Typical SQL Injection attack methods
= Blind and time-based SQL injection

= 5QL Injection protection Methods ...,

= Command injection

= Command injection exercise — starting Netcat
= Printf format string bug

= Printf format strings

= Printf format string bug — exploitation

= Exercise Printf

= Printf format string exploit — overwriting the return
address

www.scademy.com/courses
training(@scademy.com

+ Sign bit + positive binary value
-19 = 106010011

* Addition > subtraction (194-19%19-199)
= Subtraction -> addition (8- -19=0+19=19)
* Two zero values
* One’s complement: inverted bits
-19 = 11101100
* Addition -> addition + 1 (19+-194+41=0)
* Subtraction -> subtraction ~ 1 (0-19-1=-19)
* Two zero values
* Two's complement: inverted bits + 1

-19 = 11101101
= Addition -> addition (19+-19=8)
* Subtraction -> subtraction (0-19«-19)
= One single zero value

SQL Injection protection methods

* Input validation with custom methods
= Restricting input to certain values

g: fittering out certain
acters or keywords
« Problem: DROP > DRO//P
* Problem: character encoding (e.g. Unicode)
* May aiso filter out legitimate input.
= Prepared statements
= Use a constant string + an AP1 instead of string concatenation

Developing motivated
secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Mitigation of printf format string problem
= Some other input validation problems
= Array indexing — spot the bug!
» Off-by-one and other null termination errors
= The Unicode bug
= Path traversal vulnerability
= Path traversal — best practices
= Log forging
» Some other typical problems with log files
= (ase study - Shellshock
= Shellshock — basics of using functions in bash
= Shellshock — vulnerability in bash
= Exercise - ShellshoCK ..., i
= Shellshock fix and counterattacks
= Exercise — Command override with environment variables

Common coding errors and vulnerabilities

» (Code quality problems
= Dangers arising from poor code quality
= Poor code quality — spot the bug!
= Unreleased resources
= Type mismatch - Spot the bug!
= Exercise TypeMismatch
= Memory allocation problems
= Smart pointers
= Zero length allocation

= Double free
» Mixing delete and delete[]

= Use after free
» Use after free — Instance of a class
= Spotthe bug
» Use after free — Dangling pointers
= (Case study - WannaCry

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 4

Common coding errors and vulnerabilities

» Improper use of security features
= Typical problems related to the use of security features

= |nsecure randomness
= Weak PRNGs in Cand C++
= Stronger PRNGs in C

*= Password management

= Exercise — Weakness of hashed passwords

Password management and storage

= Password management and StOrage ..o

= Brute forcing " e s ki

= Special purpose hash algorithms for password storage . :mc.g“l“ S

= Argon2 and PBKDF2 implementations in C/C++ . Bé,;i”:""w:pw“”:""‘;':‘n)
= bcrypt and scrypt implementations in C/C++ s oidetiabio il e)

= (ase study - the Ashley Madison data breach

= Typical mistakes in password management

= Exercise — Hard coded passwords
= Insufficient anti-automation
= (aptcha
= (aptcha weaknesses
» Sensitive information in memory
= Protecting secrets in memory
= Minimize the attack surface
= (Core dumps
= Disabling core dumps
= Swapping
= Preventing swapping
= Problems with page locking
= Your secrets vs. dynamic memory
= Zeroisation
= QOptimization vs. zeroisation — Spot the bug!
= Best practices

» Improper error and exception handling

Empty catch block

= Typical problems with error and exception handling

« Aimost all attacks start with the attacker breaking the programmers’
assumptions

= Empty CAtCh DIOCK .o : W,eg;‘{;;‘;:;:;;;?::;;fj;::j;_,?s .
= Qverly broad catch
}

= Exercise ErrorHandling — spot the bug! S
= Exercise — Error handling s e o o

and fix the bug

[comeomoormane
www.scademy.com/courses Developing motivated

training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= (ase study — "#iamroot" authentication bypass in macOS
= Authentication process in macOS (High Sierra)
= Incorrect error handling in opendirectoryd
= The #liamroot vulnerability (CVE-2017-13872)

= Information leakage through error reporting
» Time and state problems
= Time and state related problems
= Serialization errors (TOCTTOU)
= Attacks with Symbolic INKS ...
= Exercise TOCTTOU

Attacks with symbolic links

Security testing techniques and tools

= General testing approaches

= Source code review

= (Code review for software security
= Taint analysis
= Heuristic-based
= Static code analysis
= Exercise — Static code analysis using FlawFinder
» Testing the implementation
= Dynamic security testing
= Manual vs. automated security testing
= Penetration testing
= Stress tests
= Binary and memory analysis
= Exercise — Binary analysis with strings
= |nstrumentation libraries and frameworks
= Exercise — Using Valgrind

= Fuzzing
PRSI
= Automated security testing - fuzzin
V g g = Fuzzing: systematic modification of binary input serving
= Challenges of fuzzing T Fing v o (e i s)
= Exercise — Fuzzing with AFL (American Fuzzy Lop) R croronsil ey

= Examples of typical bugs that can be found

= Buffer Overflow

+ Successive approxmaton |OKIIMNGI REJECTION

(binary search) —
——
* Signedness b
Snednsss b if ((unsigned int) 1 < @)

* Integer Overflow

1f (1%256 <= 1024)

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Deployment environment

» Configuration management
* Hardening
» Patch management

» Assessing the environment
= Password audit
= Exercise — using John the Ripper

* \ulnerability management

Vulnerability repositories

= Vulnerability repOSItOriES ...ccccvererreerre s

+ OWASP Dependency-Check

* Vulnerability attributes e e T by
= Java, NET, Ruby, Node.js, and Python projects
= Common Vulnerability Scoring System — CVSS R SR Saisoees
* NVD: https:iinvd.nist.got
= Vulnerability scanners ! Sy St
= APIs, search engines

* CVE Details: hitp j/www.cvedetai u
= CVE Search: hitps://www cir

Principles of security and secure coding

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
» Vulnerability databases

= Recommended books — C/C++

www.scademy.com/courses Developing motivated
training@scademy.com secure coders

http://www.scademy.com/courses
mailto:training@scademy.com

