scademy

Advanced software security - beyond ethical
hacking

CL-BEH | Classroom | 5days

Variants: CH, Java, C++

Audience: Software engineers
Preparedness: General software development
Exercises: Hands-on

Are you looking to start your journey towards becoming a security champion?

Despite all of your efforts, the code you have been writing your entire career is full of weaknesses
you never knew existed. You will be provided with all of the attackers’ tricks and how to mitigate
them, leaving you with no other feeling than the desire to know more.

This is a fully customizable 5 day long course ideal for advanced software engineers, or as a perfect
complement to a coding bootcamp.

It is your choice to be ahead of the pack, and be seen as a game changer in the fight against
cybercrime.

The secure coders’ community awaits you.

Outline:

IT security and secure coding

Web application security

Client-side security

Practical cryptography

Cryptographic vulnerabilities

x86 machine code, memory layout and stack operations
Buffer overflow and its exploitation

Some additional native code-related vulnerabilities
XML security

Denial of service

Input validation

Error and exception handling

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

Improper use of security features

Code quality problems

Security testing techniques and tools
Deployment environment

Principles of security and secure coding

Knowledge sources

Participants attending this course wiill:

Understand basic concepts of security, IT security and secure coding

Learn Web vulnerabilities beyond OWASP Top Ten and know how to avoid them
Learn about XML security

Learn client-side vulnerabilities and secure coding practices

Have a practical understanding of cryptography

Understand some recent attacks against cryptosystems

Realize the severe consequences of unsecure buffer handling in native code
Understand the architectural protection techniques and their weaknesses
Realize the severe consequences of unsecure buffer handling

Learn about denial of service attacks and protections

Get practical knowledge in using security testing techniques and tools
Learn how to set up and operate the deployment environment securely

Get sources and further readings on secure coding practices

Related courses:

e (L-JWA - )ava and Web application security (Classroom, 3 days)

e (L-ANS - Secure desktop application development in C# (Classroom, 3 days)

e CL-NWA - C# and Web application security (Classroom, 3 days)

e CL-WSC - Web application security (Classroom, 3 days)

e CL-WTS - Web application security testing (Classroom, 3 days)

e CL-STS - Security testing (Classroom, 3 days)

e (L-CSM - Cand C++ security master course (Classroom, 5 days)

e (L-JSM - Java and Web application security master course (Classroom, 5 days)

e CL-NSM - C# and Web application security master course (Classroom, 5 days)

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Note: Our classroom trainings come with a number of easy-to-understand exercises providing live
hacking fun. By accomplishing these exercises with the lead of the trainer, participants can analyze
vulnerable code snippets and commit attacks against them in order to fully understand the root
causes of certain security problems. All exercises are prepared in a plug-and-play manner by using a
pre-set desktop virtual machine, which provides a uniform development environment.

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy
Detailed table of contents

Day 1

IT security and secure coding

» Nature of security
* What s risk?
» |T security vs. secure coding

* From vulnerabilities to botnets and cybercrime

= Nature of security flaws

. Reasons Of diffiCUlty ..o

= 1% reason: Itis an unbalanced fight

1 Available time and resources of the developers vs. motivation and
= From an infected computer to targeted attacks i b e
« 27 reason: Security testing is challenging
Functional testing checks for how the system should work, while in case of
security it is about how the system should not wark
Web licati it
eb application security O ———
Due to the technical difficulties of measuring the level of security, there is
no real customer enforced competition
n | t + 4" reason: End-users suffer from the damage
njection 9
Developers are not motivated enough financially

= Injection principles
= SQLinjection
= Exercise — SQL injection
= Typical SQL Injection attack methods
= Blind and time-based SQL injection
= SQLinjection protection Methods ...y

SQL injection protection methods

= Effect of data storage frameworks on SQL injection in Java
= Qtherinjection flaws

= Command injection

= (ase study — ImageMagick

=  Broken authentication

= Session handling threats

= Session handling best practices
= Session handling in Java
= Setting cookie attributes — best practices
= Cross site request forgery (CSRF)
= (SRF prevention
= (CSRF prevention in Java frameworks
» Sensitive data exposure

= Transport layer security
= Enforcing HTTPS

www.scademy.com/courses Developing motivated
training@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= XML external entity (XXE)
= XML Entity introduction
= XML external entity attack (XXE) — resource inclusion
= XML external entity attack — URL invocation
= XML external entity attack — parameter entities
= Exercise — XXE attack

= Preventing entity-related attacks
= (ase study — XXE in Google Toolbar

=  Broken access control

* Content of the my . dtd file

= Typical access control weaknesses

= Insecure direct object reference (IDOR)
= Exercise — Insecure direct object reference
= Protection against IDOR
= (ase study — Facebook Notes

» (ross-Site Scripting (XSS)
= Persistent XSS
= Reflected XSS
= DOM-based XSS
= Exercise — Cross Site Scripting
= XSS prevention
= XSS prevention tools in Java and JSP

* Insecure deserialization
= Deserialization basics
= Security challenges of deserialization
= Deserialization in Java
= From deserialization to code execution
= POP payload targeting the Apache Commons gadget (Java)
= Real-world Java examples of deserialization vulnerabilities
= Issues with deserialization — JSON
= Best practices against deserialization vulnerabilities

Day 2

Client-side security

= JavaScript security
= Same Origin Policy

www.scademy.com/courses Developing motivated
training@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» (ross Origin Resource Sharing (CORS)
= Exercise — Client-side authentication
» (lient-side authentication and password management
» Protecting JavaScript code
= (Clickjacking

= Exercise — Do you Like me?

= Protection against Clickjacking

= Anti frame-busting — dismissing protection scripts

= Protection against busting frame busting

= AJAX security
= XSSin AJAX
= Scriptinjection attack in AJAX
= Exercise — XSS in AJAX
= XSS protection in Ajax
= Exercise CSRF in AJAX — JavaScript hijacking
= (SRF protection in AJAX

= HTML5 security
= New XSS possibilities in HTML5
= (Client-side persistent data storage
= HTML5 clickjacking attack — text field injection
= HTML5 clickjacking — content extraction
= Form tampering
= Exercise — Form tampering
= (Cross-origin requests
= HTML proxy with cross-origin request
= Exercise - Client side include

Practical cryptography

» Rule #1 of implementing cryptography

= (Cryptosystems
= Elements of a cryptosystem
=  Symmetric-key cryptography
= Providing confidentiality with symmetric cryptography
= Symmetric encryption algorithms
= Modes of operation
= QOther cryptographic algorithms
= Hash or message digest
= Hash algorithms

www.scademy.com/courses
training(@scademy.com

Cross Origin Resource Sharing (CORS)

+ HTTP access control - rules and @ C
restrictions of sending and receiving
« Simple request
« For GET and HEAD the request is sent .
= Also for POST, but only for the |
following Content-Types
« toxt/plain }_‘
« application/x-mi-for
* mutipart form-data N
* The response s received only from the same origin
« Browser will block it - if the request came from a JavaScript, an
ermor will occur in the callback
* Unless the server allows receiving with
Access-Control -Al low-Origin
= But sending is enough to steal information

HTML proxy with cress-arigin request

= Canwe do a HTTP proxy with this?

function ahr()

Rule 81 of implementing cryptography

I = Rule #1 of implementing cryptography
"Don't do it!"

* Don'tinvent your own algorithms
= "It will be more secure because nobody knows how it works”is a
common misconception
« Itis security by obscurity

= Don'timplement existing algorithms either
* Using available implementations from established fibraries is
more secure and more efficient anyway

Developing motivated
secure coders


http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

=  SHAttered
= Message Authentication Code (MAC)

= Providing integrity and authenticity with a symmetric key

= Random numbers and cryptography
= (Cryptographically-strong PRNGs
= Hardware-based TRNGs
» Asymmetric (public-key) cryptography
= Providing confidentiality with public-key encryption
= Rule of thumb - possession of private key
= The RSA algorithm
» Introduction to RSA algorithm
= Encrypting with RSA
»=  Combining symmetric and asymmetric algorithms
= Digital signing with RSA
= Public Key Infrastructure (PKI)
*= Man-in-the-Middle (MitM) attack
= Digital certificates against MitM attack
= (Certificate Authorities in Public Key Infrastructure
= X.509 digital certificate

Cryptographic vulnerabilities
= Protocol-level vulnerabilities
= BEAST

» Padding oracle attacks
= Adaptive chosen-ciphertext attacks
= Padding oracle attack
= (BCdecryption
= Padding oracle example
= POODLE

Day 3

x86 machine code, memory layout and stack
operations

* Intel 80x86 Processors — main registers

» Intel 80x86 Processors — most important instructions
= Intel 80x86 Processors — flags

* Intel 80x86 Processors — control instructions

www.scademy.com/courses
training(@scademy.com

Providing integrity and authenticity with & symmetric key 80 scademy

D,
I

als[e]a]e]s[a]o]s] =[]«

»le[n]n]=]e]o]aln]e]e]s

|
[e[a[=]s ] [=[s [ s [=]=]=]=]s]
I

SRRl

PADDING_ERROR

Developing motivated
secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

* Intel 80x86 Processors — stack handling and flow control

* The memory address layout

» The function calling mechanism in C/C++ 0N X86........ccccoevvvvivininns

» (alling conventions

» The local variables and the stack frame

» Function calls — prologue and epilogue of a function
= Stack frame of nested calls

= Stack frame of recursive functions

Buffer overflow and its exploitation

= Stack overflow
= Buffer overflow on the stack
= Qverwriting the return address
= Exercises — introduction
= Exercise BOFIntro
= Exercise BOFShellcode

» Protection against stack overflow
= Specific protection methods
= Protection methods at different layers
= The PreDeCo matrix of software security
= Stack overflow — Prevention (during development)
= Stack overflow — Detection (during execution)
= Fortify instrumentation (FORTIFY _SOURCE)
= Exercise BOFShellcode — Fortify

= Stack smashing protection
= Stack smashing protection variants
= Stack smashing protection in GCC
= Exercise BOFShellcode — Stack smashing protection
= Effects of stack smashing protection
» Address Space Layout Randomization (ASLR)
= Randomization with ASLR
= Practical weaknesses and limitations to ASLR
= (Circumventing ASLR: NOP sledding
* Non executable memory areas — the NX bit
= Access Control on memory segments
=  The Never eXecute (NX) bit

www.scademy.com/courses
training(@scademy.com

Developing motivated
secure coders


http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Return-to-libc attack — Circumventing the NX bit protection

= (Circumventing memory execution protection
= Return-to-libc attack

» Return oriented programming (ROP)
= Exploiting with ROP
= ROP gadgets

Some additional native code-related vulnerabilities

» Boundary violation
= Array indexing — spot the bug!
= (Off-by-one and other null termination errors
= The Unicode bug

» (Code quality problems
= Poor code quality — spot the bug!
= Unreleased resources
= Type mismatch — Spot the bug!

Exercise TypeMismatch
= Memory allocation problems
=  Smart pointers
= Zero length allocation
= Double free
» Mixing delete and delete[]
= Race condition
= Serialization errors (TOCTTOU)
= Attacks with symbolic links
= Exercise TOCTTOU

= (ase study - the Shellshock bash vulnerability
= Shellshock — basics of using functions in bash

Shellshock — vulnerability in bash
= Exercise - Shellshock

Shellshock fix and counterattacks

= Exercise — Command override with environment
variables

www.scademy.com/courses
training@scademy.com

Developing motivated
secure coders


http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Day 4

XML security

* |ntroduction
= XML parsing
= XML injection
= (Ab)using CDATA to store XSS payload in XML
= Exercise — XML injection
= Protection through sanitization and XML validation
=  XMLbomb
= Exercise — XML bomb

Denial of service

* DoS introduction

* Asymmetric DoS

= SSL/TLS renegotiation DoS

» Asymmetric DOS with JSON deserialization
= Regular expression DoS (ReDoS)

Exercise ReDoS
ReDoS mitigation
Case study — ReDos in Stack Exchange

= Hashtable collision attack

Using hashtables to store inputs

Hashtable COllISION ...ttt

Hashtable collision in Java

Input validation

* [nput validation concepts

* Integer problems

Representation of negative integers
Integer ranges
Integer overflow
Integer problems in C/C++

The integer promotion rule in C/C++

Arithmetic overflow — spot the bug!

Exercise IntOverflow

What is the value of Math.abs(Integer.MIN_VALUE)?

www.scademy.com/courses
training(@scademy.com

Worst case complexity: O(n?)

* An arithmetic integer overflow occurs when an integer value

is incremented to a value that is too large to store in the
associated representation

Developing motivated

secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= Signedness bug — spot the bug!
= Integer truncation — spot the bug!

= Integer problem — best practices
= GCCtrapv
= Exercise IntOverflow
»  Avoiding arithmetic overflow — addition
»  Avoiding arithmetic overflow — multiplication
= Dealing with signed/unsigned integer promotion in C
= Safeinteger handlingin C
= The Safelnt class for C++
= Detecting arithmetic overflow in Java 8
» Exercise — Using addExact() in Java
= (ase study — Android Stagefright
»  Stagefright — a quick introduction
»  Some Stagefright code examples — spot the bugs!

Path traversal vulnerability
= Path traversal — best practices

Unvalidated redirects and forwards

Log forging
= Some other typical problems with log files

Printf format string bug
= Printf format strings
= Printf format string bug — exploitation
= Exercise Printf
=  Printf format string exploit — overwriting the return address

Error and exception handling

= Typical problems with error and exception handling

Empty eatch block

Empty catch BIOCK ...

= Aimost all attacks start with the attacker breaking the programmers’

Overly broad throws

Overly broad catch

g and when the error does happen, the program loses the
exception and makes it harder to detect the cause of the problem
and fix the bug

Catching NullPointerException

Exception handling — spot the bug!

Exercise ScademyPay — Error handling

» Exercise — Error handling

www.scademy.com/courses Developing motivated
training@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

= (ase study — "#iamroot" authentication bypass in macOS
= Authentication process in macOS (High Sierra)
= Incorrect error handling in opendirectoryd
» The #iamroot vulnerability (CVE-2017-13872)

Day 5

Improper use of security features

= Typical problems related to the use of security features

» Insecure randomness
= Weak PRNGs in Cand C++
= Stronger PRNGsin C
= Weak PRNGs in Java
= Exercise RandomTest
= Using random numbers in Java — spot the bug!

» Password management

= Exercise — Weakness of hashed passwords
= Password management and StOrage........ccoovvnieeeeneneneesseens
= Special purpose hash algorithms for password storage

= Argon2 and PBKDF2 implementations in C/C++

nputed Rainbow tables

ler: use passphrase)
rypt or PBKDF2

= bcrypt and scrypt implementations in C/C++

= Argon2 and PBKDF2 implementations in Java
= bcrypt and scrypt implementations in Java

= (ase study - the Ashley Madison data breach
= Theloginkey token
* Revealing the passwords with brute forcing

= Typical mistakes in password management
= Exercise — Hard coded passwords

» Accessibility modifiers
= Accessing private fields with reflection in Java
= Exercise Reflection — Accessing private fields with reflection

» Exercise ScademyPay — Integrity protection weakness

www.scademy.com/courses Developing motivated
training@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

Code quality problems

» Dangers arising from poor code quality

» Poor code quality — spot the bug!

» Unreleased resources

» Private arrays — spot the bug!

= Private arrays — typed field returned from a public method
= Exercise Object Hijack

» Public method without final — object hijacking
= Serialization — spot the bug!

» Exercise Serializable Sensitive

» |Immutable String — spot the bug!

= Exercise Immutable Strings

» Immutability and security

Security testing techniques and tools

= General testing approaches

» Testing the implementation
= Dynamic security testing
= Manual vs. automated security testing
= Binary and memory analysis
= Exercise — Binary analysis with strings
= |nstrumentation libraries and frameworks
= Exercise — Using Valgrind

= Fuzzing
= Automated security testing - fuzzing........ccooiininnns

Automated security testing - fuzzing

i « Fuzzing: systematic modification of binary input serving
= Challenges of fuzzing s tast vectors
» Fuzzing with random inputs (the initial idea)
on pre-defined inputs
ting fuzzing
ical bugs that can be found

»  Exercise — Fuzzing with AFL (American Fuzzy Lop)

i VU|HErabi|it\/ >canners ' B:":L\?c\;iswweappron'na(non oK JEREBR) reJECTION
(binary search) s n

» Exercise — Using a vulnerability scanner + Signaansss big —_—

1f ((unsigned int) 1 < 0)
= Integer Overflow

= SQL injection tools ¢ om0 o 1020
= Exercise — Using SQL injection tools

Deployment environment

» Configuration management
» Hardening
» Patch management

» Assessing the environment

www.scademy.com/courses Developing motivated
training(@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

scademy

secure coding academy

» Vulnerability management

= Vulnerability repoSItOrEs ...
= Vulnerability attributes . OWASP DepondencyCheck
m . = Identifies project dependencies and checks if there are any
= Common Vulnerability Scoring System — CVSS | A i e s
e = Vulnerability repositories / databases
= Vulnerability scanners ¢ CVE sionina

= CERT Vuin. Notes DB: hitp //www kb
* Microsoft Security Bulletins:

Principles of security and secure coding i

= CVE Search: hitps.//www circl lw/senscesicve-search/

» Matt Bishop's principles of robust programming

» The security principles of Saltzer and Schroeder

Knowledge sources

= Secure coding sources — a starter kit
= Vulnerability databases

» Java secure coding sources

» Recommended books — C/C++

=  Recommended books — Java

www.scademy.com/courses Developing motivated
training@scademy.com secure coders



http://www.scademy.com/courses
mailto:training@scademy.com

